Answer:
Kindly check explanation
Explanation:
From the given information :
Linear model : y = - 0.04x + 29.83
Quadratic model : y = - 0.02x² + 0.16x + 29.35
Cubic model : y = 0.02x³ - 0.38x² + 2.11x + 26.88
Predicted y value for X = 1 ; X = 2
Linear model :
y = - 0.04(1) + 29.83 = 29.79
y = - 0.04(2) + 29.83 = 29.75
Quadratic model :
X = 1
y = - 0.02(1)^2 + 0.16(1) + 29.35 = 29.49
X = 2
y = - 0.02(2)^2 + 0.16(2) + 29.35 = 29.59
Cubic model :
X = 1
y = 0.02(1)^3 - 0.38(1)^2 + 2.11(1) + 26.88 = 28.63
X = 2
y = 0.02(2)^3 - 0.38(2)^3 + 2.11(2) + 26.88 = 28.22
Based on the R² value of the models given :
Linear ; R² = 0.001 ; R = sqrt(0.001) = 0.0316
Quadratic ; R² = 0.001 ; R = sqrt(0.001) = 0.0316
Cubic ; R² = 0.008 ; R = sqrt(0.008) = 0.089
Hence, the model which best fits the data is Cubic model.