76.5k views
0 votes
Please answer the two questions!

Please answer the two questions!-example-1
User Emonigma
by
8.4k points

1 Answer

5 votes

Given:

The expressions are

(c)
\left\{\left((2^4* 3^6)/(12^2)\right)^0\right\}^3

(d)
\frac{13^3* 7^0}{\{(65* 49)^2\}^1}

To find:

The simplified form of the given expression.

Solution:

(c)

We have,


\left\{\left((2^4* 3^6)/(12^2)\right)^0\right\}^3

We know that, zero to the power of a non-zero number is always 1. So,
\left((2^4* 3^6)/(12^2)\right)^0=1


\left\{\left((2^4* 3^6)/(12^2)\right)^0\right\}^3=(1)^3


\left\{\left((2^4* 3^6)/(12^2)\right)^0\right\}^3=1

Therefore, the value of the given expression is 1.

(d)

We have,


\frac{13^3* 7^0}{\{(65* 49)^2\}^1}

It can be written as


\frac{13^3* 7^0}{\{(65* 49)^2\}^1}=(13^3* 1)/((65* 49)^2)


\frac{13^3* 7^0}{\{(65* 49)^2\}^1}=(13* 13* 13)/((65* 49)(65* 49))


\frac{13^3* 7^0}{\{(65* 49)^2\}^1}=(13)/((5* 49)(5* 49))


\frac{13^3* 7^0}{\{(65* 49)^2\}^1}=(13)/(60025)


\frac{13^3* 7^0}{\{(65* 49)^2\}^1}=(13)/(60025)

Therefore, the value of given expression is
(13)/(60025).

User Petro
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories