Given:
The probability of landing A is 0.70.
The probability of landing B is 0.60.
The probability of landing both is 0.50.
To find:
The probability of landing A given it lands B.
Solution:
We have,
![P(A) = 0.70](https://img.qammunity.org/2022/formulas/mathematics/college/hdwrj3divjd1v3r5acw8mtrvv0oouuzbk5.png)
![P(B) = 0.60](https://img.qammunity.org/2022/formulas/mathematics/college/6jrrx665ig8dmpjmwc9d8fgau5eo7iex2q.png)
![P(A\cap B) = 0.50](https://img.qammunity.org/2022/formulas/mathematics/college/v5jkxu9wcysc6rratrldr9xg2xg26te15t.png)
The probability of landing A given it lands B is
![P\left((A)/(B)\right)=(P(A\cap B))/(P(B))](https://img.qammunity.org/2022/formulas/mathematics/college/zbxl1scb0ruet6i4lktem8hbiphnia21fy.png)
![P\left((A)/(B)\right)=(0.50)/(0.60)](https://img.qammunity.org/2022/formulas/mathematics/college/wo6a1zw0s5u8t75umlgq9qrro87tknz5ss.png)
![P\left((A)/(B)\right)=(5)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/zd2q6lug43jh03ew14l091l6l1x77dfztr.png)
![P\left((A)/(B)\right)=0.8333...](https://img.qammunity.org/2022/formulas/mathematics/college/xd95ep0lt3b3cvs6r3qro3gnnsmdwqtx1y.png)
![P\left((A)/(B)\right)\approx 0.83](https://img.qammunity.org/2022/formulas/mathematics/college/ylf7iv5prrre9johsvyewpna8saw77fk1f.png)
Therefore, the probability of landing A given it lands B is about 0.83.