139k views
20 votes
If the lateral surface area of a cylinder with height 4cm is 24pi cm squared then what is its volume?​

2 Answers

13 votes

Explanation:

Given :-

  • Height is = 4cm
  • Lateral surface area of cylinder is = 24πcm²

to find :-

  • volume of the given cylinder.

Solution :-

Lateral surface area of cylinder = 2πrh

24π cm = 2πrh

Cancelling π on both the sides ,

24/2h = r

putting the value of h i.e, 4 cm

24/2×4 cm = r

3 cm = radius

Now volume of Cylinder = πr²h

putting all the values ,

Volume = 3.14 × 3² × 4 cm³

Volume = 113.04 cm³

User David Z
by
4.1k points
10 votes

We are given

  • Height of cylinder is = 4cm
  • Lateral surface area of cylinder is = 24πcm²

We are asked to find volume of the given cylinder.

Let the radius be "r".Then according to the question,it’s given –


\qquad
\pink{\twoheadrightarrow\bf Curved\: surface\: area _((Cylinder))= 2\pi r h }


\qquad
\twoheadrightarrow\sf 2\pi r h = 24 \pi


\qquad
\twoheadrightarrow\sf 2\cancel{\pi} rh = 24 \cancel{\pi}


\qquad
\twoheadrightarrow\sf r =(24)/(2h)


\qquad
\twoheadrightarrow\sf r = (24)/(2* 4)


\qquad
\twoheadrightarrow\sf r = (24)/(8)


\qquad
\twoheadrightarrow\sf r = \cancel{(24)/(8)}


\qquad
\pink{\twoheadrightarrow\bf r = 3 \: cm}

Now, Let's find volume of cylinder


\qquad
\purple{\twoheadrightarrow\bf V_((Cylinder)) = \pi {r}^(2)h}


\qquad
\twoheadrightarrow\sf V_((Cylinder)) = \pi * 3^2* 4


\qquad
\twoheadrightarrow\sf V_((Cylinder)) = \pi * 9 * 4


\qquad
\twoheadrightarrow\sf V_((Cylinder)) = \pi * 36


\qquad
\purple{\twoheadrightarrow\bf V_((Cylinder)) = 36 \pi \: cm^3}

  • Henceforth, volume of cylinder is 36π cm³.
User Athlonshi
by
4.8k points