47.4k views
0 votes
Pls, can someone explain me the solution step by step :)​

Pls, can someone explain me the solution step by step :)​-example-1

1 Answer

4 votes

Answer:

4

Explanation:

Given expression:


\left(2-\log_(√(2))10\right)\left(2-\log_(√(5))10\right)


\textsf{Apply the radical rule}: \quad √(a)=a^{(1)/(2)}


\implies \left(2-\log_{2^{(1)/(2)}}10\right)\left(2-\log_{5^{(1)/(2)}}10\right)


\textsf{Apply the log rule}: \quad \log _(a^n)(x)=(1)/(n)\log _a\left(x\right),\:\quad \:a > 0


\implies \left(2-(1)/((1)/(2))\log_(2)10\right)\left(2-(1)/((1)/(2))\log_(5)10\right)


\implies \left(2-2 \log_(2)10\right)\left(2-2\log_(5)10\right)

Rewrite 10 as 2 · 5 and 10 as 5 · 2:


\implies \left(2-2 \log_(2)(2 \cdot 5)\right)\left(2-2\log_(5)(5 \cdot 2)\right)


\textsf{Apply the log product law}: \quad \log_axy=\log_ax + \log_ay


\implies \left(2-(2 \log_(2)2+2\log_2 5)\right)\left(2-(2\log_(5)5 +2\log_52)\right)


\implies \left(2-2 \log_(2)2-2\log_2 5\right)\left(2-2\log_(5)5 -2\log_52\right)


\textsf{Apply log law}: \quad \log_aa=1


\implies \left(2-2(1)-2\log_2 5\right)\left(2-2(1) -2\log_52\right)


\implies \left(2-2-2\log_2 5\right)\left(2-2 -2\log_52\right)


\implies \left(-2\log_2 5\right)\left(-2\log_52\right)

Multiply:


\implies 4 \cdot \log_2 5 \cdot \log_52


\textsf{Apply the log rule}: \quad \log _(a)(x) \cdot \log_(x)(a)=1


\implies 4 \cdot 1


\implies 4

User Chinmayan
by
3.3k points