230k views
0 votes
Can someone help me with making the x the subject of the formula

100 point up for grabs pls helpppp


y =xa+ b

y =xa− b

y =x + 2 divided by two

User Yndolok
by
3.1k points

1 Answer

4 votes

Answer:


\textsf{1)} \quad x=(y-b)/(a)


\textsf{2)} \quad x=(y+b)/(a)


\textsf{3)} \quad x=2y-2

Explanation:

Question 1


\boxed{\begin{aligned}&\textsf{Given}: \quad &y & =xa+b\\\\&\textsf{Subtract $b$ from both sides}: \quad & y-b&=xa+b-b \\\\&\textsf{Simplify}: \quad &y-b&=xa \\\\&\textsf{Divide both sides by $a$}: \quad &(y-b)/(a) &=(xa)/(a) \\\\&\textsf{Simplify}: \quad &(y-b)/(a) &=x\\\\&\textsf{Switch sides}: \quad & x&=(y-b)/(a)\end{aligned}}

Question 2


\boxed{\begin{aligned}&\textsf{Given}: \quad &y & =xa-b\\\\&\textsf{Add $b$ to both sides}: \quad & y+b&=xa-b+b \\\\&\textsf{Simplify}: \quad &y+b&=xa \\\\&\textsf{Divide both sides by $a$}: \quad &(y+b)/(a) &=(xa)/(a) \\\\&\textsf{Simplify}: \quad &(y+b)/(a) &=x\\\\&\textsf{Switch sides}: \quad & x&=(y+b)/(a)\end{aligned}}

Question 3


\boxed{\begin{aligned}&\textsf{Given}: \quad & y&=(x+2)/(2) \\\\&\textsf{Multiply both sides by $2$}: \quad & 2 \cdot y&=2 \cdot (x+2)/(2) \\\\&\textsf{Simplify}: \quad & 2y&=x+2 \\\\&\textsf{Subtract $2$ from both sides}: \quad & 2y-2&=x+2-2 \\\\&\textsf{Simplify}: \quad & 2y-2&=x \\\\&\textsf{Switch sides}: \quad &x&=2y-2\end{aligned}}

User Matias Seguel
by
3.5k points