81.0k views
1 vote
NO LINKS!!

Condense the expression to the logarithm of a single quantity


-4 ln(3x)


Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume the variable is positive.)

1. ln (2x)

2 Answers

3 votes

Answer:


\ln(3x)^(-4)


\ln2 + \ln x

Explanation:

Given expression:


-4\ln(3x)


\textsf{Apply the power law}: \quad n \ln x=\ln x^n


\implies \ln(3x)^(-4)

---------------------------------------------------------------------------------

Given expression:


\ln(2x)


\textsf{Apply the product law}: \quad \ln xy=\ln x + \ln y


\implies \ln2 + \ln x

User Mugiwara
by
3.9k points
3 votes

Part 1

Condense the expression:

  • - 4 ln (3x) =
  • ln (3x)⁻⁴

Used property:

  • n logₐ b = logₐ bⁿ

Part 2

Expand the expression:

  • ln (2x) =
  • ln 2 + ln x

Used property:

  • log (ab) = log a + log b
User Carlo Espino
by
3.6k points