22.6k views
4 votes
What is the area of a triangle whose vertices are J(-2,1), K(0.3), L(3.-4)?

1 Answer

1 vote

Check the picture below, so that's the triangle hmmmm a bit non-right-triangle or irregular per se, so let's use Heron's formula on this one, so we'll have to first find the length of each side


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ J(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{0}~,~\stackrel{y_2}{3}) ~\hfill JK=√((~~ 0- (-2)~~)^2 + (~~ 3- 1~~)^2) \\\\\\ ~\hfill JK=√(( 2)^2 + ( 2)^2) \implies JK=√( 8 )


K(\stackrel{x_1}{0}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{3}~,~\stackrel{y_2}{-4}) ~\hfill KL=√((~~ 3- 0~~)^2 + (~~ -4- 3~~)^2) \\\\\\ ~\hfill KL=√(( 3)^2 + ( -7)^2) \implies KL=√( 58 ) \\\\\\ L(\stackrel{x_1}{3}~,~\stackrel{y_1}{-4})\qquad J(\stackrel{x_2}{-2}~,~\stackrel{y_2}{1}) ~\hfill LJ=√((~~ -2- 3~~)^2 + (~~ 1- (-4)~~)^2) \\\\\\ ~\hfill LJ=√(( -5)^2 + (5)^2) \implies LJ=√( 50 )

now let's use those three lengths for Heron's


\qquad \textit{Heron's area formula} \\\\ A=√(s(s-a)(s-b)(s-c))\qquad \begin{cases} s=(a+b+c)/(2)\\[-0.5em] \hrulefill\\ a=√(8)\\ b=√(58)\\ c=√(50)\\ s=(√(8)+√(58)+√(50))/(2)\\\\ \qquad (√(58)+7√(2))/(2) \end{cases}


A=\sqrt{(√(58)+7√(2))/(2)\left((√(58)+7√(2))/(2)-√(8) \right)\left((√(58)+7√(2))/(2)-√(58) \right)\left((√(58)+7√(2))/(2)-√(50) \right)} \\\\\\ ~\hfill {\Large \begin{array}{llll} A=10 \end{array}}~\hfill

What is the area of a triangle whose vertices are J(-2,1), K(0.3), L(3.-4)?-example-1
User Martin Smith
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories