107k views
2 votes
8. Which point is a solution to the system of equations shown below?

(1) (3,7)
(2) (0,1)
(3) (1,5)
(4) (2,3)

y=-2x+7
y = 4x-5

2 Answers

2 votes
  • Answer:


\red{\boxed{ \green{\sf Option \: 4: (2 \: , 3)}}}


\\

  • Step-by-step explanation:


\sf First, \: we \: have \: to \: understand \: that: \\ \sf If \: \red{y} = \orange{a} \: and \: \red{y} = \blue{b}, \: then \: \orange{a} = \blue{b}.


\\


\sf Let \: \orange{-2x+7} \: be \: \orange{a} \: and \: \blue{4x-5 \\ } \: be \: \blue{b}.


\star \: \sf Solve \: the \: equation \: \orange{a} = \blue{b}. \: \star


\\


\sf \orange{a} = \blue{b} \\ \Longleftrightarrow \sf \orange{ - 2x + 7} = \blue{4x - 5} \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \diamond \: \sf Subtract \: 4x \: from \: both \: sides. \diamond \\ \\ \Longleftrightarrow \sf - 6x + 7 = - 5 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \diamond \: \sf Subtract \: 7 \: from \: both \: sides. \diamond \\ \\ \Longleftrightarrow \sf - 6x = - 12 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \diamond \: \sf Divide \: both \: sides \: by \: -6. \: \diamond \\ \\ \Longleftrightarrow \sf x = ( - 12)/( - 6) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \Longleftrightarrow \boxed{\sf \purple{x = 2}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:


\\


\star \: \sf Remplace \: \purple{x} \: with \: \purple{2} \: in \: one \: of \: the \: given \: equations. \: \star


\\


\sf \red{y }= - 2 \purple{x} + 7 \\ \implies \sf \red{y} = - 2 \purple{(2)} + 7 \: \: \: \: \: \: \\ \\ \implies \boxed{\sf \red{y= 3}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:


\\

Therefore, the point which is a solution to the system of equations is (2 , 3). This corresponds to option 4.

User Rpkelly
by
8.1k points
2 votes

Answer:

option (4)

Step-by-step explanation:

y = - 2x +7 → (1)

y = 4x - 5 → (2)

substitute y = 4x - 5 into (1)

4x - 5 = - 2x + 7 ( add 2x to both sides )

6x - 5 = 7 ( add 5 to both sides )

6x = 12 ( divide both sides by 6 )

x = 2

substitute x = 2 into either of the 2 equations and solve for y

substituting into (2)

y = 4(2) - 5 = 8 - 5 = 3

solution is (2, 3 )

User Michael Snyder
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories