Answer:
B
Explanation:
Solve (x + y(x)) (-(dy(x))/(dx) + 1) = (dy(x))/(dx) + 1:
Let v(x) = x + y(x), which gives (dv(x))/(dx) = (dy(x))/(dx) + 1:
(-(dv(x))/(dx) + 2) v(x) = (dv(x))/(dx)
Simplify:
-((dv(x))/(dx) - 2) v(x) = (dv(x))/(dx)
Solve for (dv(x))/(dx):
(dv(x))/(dx) = (2 v(x))/(v(x) + 1)
Divide both sides by v(x)/(v(x) + 1):
((dv(x))/(dx) (v(x) + 1))/v(x) = 2
Integrate both sides with respect to x:
integral((dv(x))/(dx) (v(x) + 1))/v(x) dx = integral2dx
Evaluate the integrals:
log(v(x)) + v(x) = 2 x + c_1, where c_1 is an arbitrary constant.
Solve for v(x):
v(x) = W(e^(2 x + c_1))
Simplify the arbitrary constants:
v(x) = W(c_1 e^(2 x))
Substitute back for y(x) = -x + v(x):
Answer: y(x) = -x + W(c_1 e^(2 x))