152k views
0 votes
If f(x) = r to the power x where r > 0 and if f(6) = 125, what is the value of f(7) ?

help fpr gods sake

1 Answer

5 votes

Answer:


f(7)=125√(5)

Explanation:

Given function:


f(x)=r^x, \quad r > 0

If f(6) = 125, substitute x = 6 into the function and equate it to 125:


\implies r^6=125

Rewrite 125 as 5³:


\implies r^6=5^3

Cube root both sides of the equation:


\implies \sqrt[3]{r^6}=\sqrt[3]{5^3}


\textsf{Apply exponent rule} \quad \sqrt[n]{a^b}=a^{(b)/(n)}:


\implies r^{(6)/(3)}=5^{(3)/(3)}


\implies r^(2)=5^1


\implies r^(2)=5

Square root both sides of the equation:


\implies √(r^2)=√(5)


\implies r=\pm √(5)

As r > 0 then r = √5

Therefore the function is:


f(x)=\left(√(5) \right)^x

To calculate f(7), substitute x = 7 into the found function:


\implies f(7)=\left(√(5) \right)^7


\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{(1)/(n)}:


\implies f(7)=(5^{(1)/(2)})^7


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies f(7)=5^{(7)/(2)}

Rewrite ⁷/₂ as 3 + ¹/₂ :


\implies f(7)=5^{\left(3+(1)/(2)\right)}


\textsf{Apply exponent rule} \quad a^(b+c)=a^b \cdot a^c:


\implies f(7)=5^3 \cdot 5^{(1)/(2)}

Simplify:


\implies f(7)=125 √(5)

User Hirdesh Vishwdewa
by
3.4k points