Answer:
![(x-2)^2+(y-6)^2=169](https://img.qammunity.org/2023/formulas/mathematics/college/oqtw10hva2fk7jd8h628q265axds8o9rcv.png)
Explanation:
![\boxed{\begin{minipage}{4 cm}\underline{Equation of a circle}\\\\$(x-a)^2+(y-b)^2=r^2$\\\\where:\\ \phantom{ww}$\bullet$ $(a, b)$ is the center. \\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a14g8x0k21744p02xwico8x0nmp8w3bbzv.png)
Given:
- Center = (2, 6)
- Point on the circle = (-3, 18)
Substitute the given center and point into the equation of a circle formula and solve for r²:
![\implies (-3-2)^2+(18-6)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/3ph15i8qmrds30309ynmc1eib7vbe3mlw8.png)
![\implies (-5)^2+(12)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/7b138cr8y1je5g9cctzfl22eqqt11lueuj.png)
![\implies 25+144=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/twesifqde8xoadp545zfvxm8kjer3dswlo.png)
![\implies 169=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/zugmrdtyjstbp6ctxlcx105moxm19s3lv6.png)
![\implies r^2=169](https://img.qammunity.org/2023/formulas/mathematics/college/lad35w64440k4o0efrn40aubmx9prdh7f8.png)
Therefore, the standard form of the equation of the circle with the given characteristics is:
![(x-2)^2+(y-6)^2=169](https://img.qammunity.org/2023/formulas/mathematics/college/oqtw10hva2fk7jd8h628q265axds8o9rcv.png)