Answer:
Relative minimum (x, y) = (4, -17)
Relative maximum (x, y) = (0, 15)
Explanation:
Given function:
![h(x) = x^3 - 6x^2 + 15](https://img.qammunity.org/2023/formulas/mathematics/college/xj1c9j0ysblj0dc2p204vde2efvnj4q82g.png)
Use a graphing calculator to graph the function (see attachment).
The relative minima and maxima of a function are the turning points.
From inspection of the graphed function:
- Relative minimum (x, y) = (4, -17)
- Relative maximum (x, y) = (0, 15)
To find the x-values of the turning points, differentiate the function:
![\implies h'(x)=3x^2-12x](https://img.qammunity.org/2023/formulas/mathematics/college/b2okbil0pys3m5bf8di64b8aqt55zimype.png)
Then set the derivative of the function to zero and solve for x:
![\implies 3x^2-12x=0](https://img.qammunity.org/2023/formulas/mathematics/college/or3ys9rsm9p9l7ur2iemcpytbz8chudhrf.png)
![\implies 3x(x-4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/dfjwhf4btjz97decxlc9sxob658oo2uf1k.png)
Therefore the x-values of the turning points are:
To find the y-values, substitute the x-values into the function:
![\implies h(0)=(0)^3-6(0)^2+15=15](https://img.qammunity.org/2023/formulas/mathematics/college/988hjrm0ncd4523a2t7jsvw83w7fh9jeoh.png)
![\implies h(4)=(4)^3-6(4)^2+15=-17](https://img.qammunity.org/2023/formulas/mathematics/college/wr938gi6td0k7agnnc9hxy7sguqtkgqf98.png)
Therefore, this confirms that the maxima and minima are: