Answer:
381 bacteria
Explanation:
![\boxed{\begin{minipage}{9 cm}\underline{General form of an Exponential Function with base $e$}\\\\$y=Ae^(kt)$\\\\where:\\\phantom{ww}$\bullet$ $A$ is the initial value ($y$-intercept). \\ \phantom{ww}$\bullet$ $e$ is Euler's number. \\ \phantom{ww}$\bullet$ $k$ is some constant.\\ \phantom{ww}$\bullet$ $t$ is the independent value time.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/8x9txbfe1ia0ieb5wqfqk42vodjfxkoh7b.png)
If the initial population is 240 bacteria, then A = 240:
![\implies y=240e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/tvc6glmpkypgeldxvbxnvw9cuz0edmfydf.png)
Create equations for the population after 1 hour and 7 hours:
![t=1\implies y=240e^(k)](https://img.qammunity.org/2023/formulas/mathematics/college/bk0a5ratjrp9d1jkbreysa7gjrq4o9woya.png)
![t=7\implies y=240e^(7k)](https://img.qammunity.org/2023/formulas/mathematics/college/oiub3hq1zqtbb3yh7snirnef16jwr348jb.png)
Given the population after 7 hours is double the population after 1 hour:
![\implies 240e^(7k)=2 \cdot 240e^k](https://img.qammunity.org/2023/formulas/mathematics/college/ky9i9mifgkepq1u0jdj9kw1lf8ie8enve0.png)
![\implies e^(7k)=2e^k](https://img.qammunity.org/2023/formulas/mathematics/college/t82m46z1bp7uych58qvc2uru2vb7yevoqq.png)
Solve the equation to find the value of k:
![\implies e^(7k)=2e^k](https://img.qammunity.org/2023/formulas/mathematics/college/t82m46z1bp7uych58qvc2uru2vb7yevoqq.png)
![\implies (e^(7k))/(e^k)=2](https://img.qammunity.org/2023/formulas/mathematics/college/6zulreb76fw52k3ey8m95b7qmnsnr4ymvp.png)
![\implies e^(6k)=2](https://img.qammunity.org/2023/formulas/mathematics/college/xgk68ljqgoh1ew21blp9a4s09yfeb9yoiw.png)
![\implies \ln e^(6k)=\ln 2](https://img.qammunity.org/2023/formulas/mathematics/college/oh9417cqdnq7hztn557aribxhfa9tmnfy0.png)
![\implies 6k \ln e = \ln 2](https://img.qammunity.org/2023/formulas/mathematics/college/3803jca4mw9ewajq6lh3jtmjtxbweygn6i.png)
![\implies 6k=\ln 2](https://img.qammunity.org/2023/formulas/mathematics/college/yvigjttgo6byg74jxmqtavwbxenwg8eyx1.png)
![\implies k=(1)/(6)\ln 2](https://img.qammunity.org/2023/formulas/mathematics/college/139551oomjixlv3x75qbp5im74lriks5c1.png)
Therefore, the equation that models the given parameters is:
![y=240e^{(1)/(6)t\ln 2}](https://img.qammunity.org/2023/formulas/mathematics/college/65jbq1ccqqvivviuvqjqilpuqhpmds171q.png)
To find how many bacteria there will be after 4 hours, substitute t = 4 into the equation:
![\implies y=240e^{(1)/(6)(4)\ln 2}](https://img.qammunity.org/2023/formulas/mathematics/college/6xqpu5cprjfds3jouawzsvzxxmer2c5sc3.png)
![\implies y=240e^{(2)/(3)\ln 2}](https://img.qammunity.org/2023/formulas/mathematics/college/5ze5u9rbofgs7n9l6zwfrwr0otsanvelzl.png)
![\implies y=240(1.58740105...)](https://img.qammunity.org/2023/formulas/mathematics/college/62341eq6a14vf78fd5oked2v2pify8pv8z.png)
![\implies y=380.9762525](https://img.qammunity.org/2023/formulas/mathematics/college/yc0iloiobg0amoh5pfo49vy9con7cqgjxf.png)
![\implies y=381](https://img.qammunity.org/2023/formulas/mathematics/college/xjearnocsseocxzb3o6u3inrbjenqrg35p.png)
Therefore, there will be 381 bacteria after 4 hours