Answer:
a) 2001: P = 2457.106 thousand people
2006: P = 2398.813 thousand people
2011: P = 2327.899 thousand people
2015: P = 2260.998 thousand people
2020: P = 2163.573 thousand people
b) 2018
c) 2018
Explanation:
Given function:
![P = (2687)/(1 + 0.089e^(0.050t))](https://img.qammunity.org/2023/formulas/mathematics/college/2m00ipwmry4dj4wokmbr64kz7nbqck0wks.png)
where:
- P = population (in thousands)
- t = number of years after the year 2000
Part (a)
In 2001, t = 1:
![\begin{aligned}t = 1 \implies P &= (2687)/(1 + 0.089e^(0.050(1)))\\\\&= (2687)/(1 + 0.089e^(0.050))\\\\&=2457.106 \; \sf (3 \; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/rouio1cs9irw58wcpuphu4rijyrmkcteoh.png)
In 2006, t = 6:
![\begin{aligned}t = 6 \implies P &= (2687)/(1 + 0.089e^(0.050(6)))\\\\&= (2687)/(1 + 0.089e^(0.3))\\\\&=2398.813 \; \sf (3 \; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/gcast7pptlczg0i2x0i41key51f9jm6zoy.png)
In 2011, t = 11:
![\begin{aligned}t = 11 \implies P &= (2687)/(1 + 0.089e^(0.050(11)))\\\\&= (2687)/(1 + 0.089e^(0.55))\\\\&=2327.899 \; \sf (3 \; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/qxq8y067l333pabxyxtg94ds0xi8ee6lt4.png)
In 2015, t = 15:
![\begin{aligned}t = 15 \implies P &= (2687)/(1 + 0.089e^(0.050(15)))\\\\&= (2687)/(1 + 0.089e^(0.75))\\\\&= 2260.998\; \sf (3 \; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/vwomh4iihrengijhub8dxy2e3xr5yizt02.png)
In 2020, t = 20:
![\begin{aligned}t = 20 \implies P &= (2687)/(1 + 0.089e^(0.050(20)))\\\\&= (2687)/(1 + 0.089e^(1))\\\\&=2163.573 \; \sf (3 \; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/5ue92r9fk0cyfdw25d5v51arjjlwlg153l.png)
Part (b)
See attached for the graph of the function.
2.2 million = 2,200,000 = 2200 thousand
Therefore, draw a line at y = 2200.
The point of intersection between P(t) and y = 2200 is (18.223, 2200).
Therefore, the population will reach 2.2 million during 2018.
![\implies (2687)/(1 + 0.089e^(0.050t))=2200](https://img.qammunity.org/2023/formulas/mathematics/college/e1bjdfaaf8k7x77a3czesy37vup6dbq1v7.png)
![\implies 2687=2200(1 + 0.089e^(0.050t))](https://img.qammunity.org/2023/formulas/mathematics/college/rymao2i3m8z27txoilxvmk3i5yqhxw527d.png)
![\implies (2687)/(2200)=1 + 0.089e^(0.050t)](https://img.qammunity.org/2023/formulas/mathematics/college/cstwre4mbkebmnsuk3nesvgoo9xnaafjmu.png)
![\implies (2687)/(2200)-1=0.089e^(0.050t)](https://img.qammunity.org/2023/formulas/mathematics/college/taqz6gaioo3e5udegd2y2yuuk6f5ti2ltp.png)
![\implies (487)/(2200)=0.089e^(0.050t)](https://img.qammunity.org/2023/formulas/mathematics/college/fhthe8adym7ijugaaq1b3a7xi6snxfys8m.png)
![\implies \ln \left((487)/(2200)\right)=\ln \left(0.089e^(0.050t)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ufar4gyet8wm24b304bbk5dg6p8wd7t2rp.png)
![\implies \ln \left((487)/(2200)\right)=\ln \left(0.089 \right)+\ln \left(e^(0.050t)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/pzgjm08i15mocufdp05crlyohq0neaunnc.png)
![\implies \ln \left((487)/(2200)\right)=\ln \left(0.089 \right)+0.050t](https://img.qammunity.org/2023/formulas/mathematics/college/7ud0re1yn6wuy7g9pu9hfyxxt1hw5e53r7.png)
![\implies \ln \left((487)/(2200)\right)-\ln \left(0.089 \right)=0.050t](https://img.qammunity.org/2023/formulas/mathematics/college/ju56oykk1u1az4pidm89fn08zdhxc21wax.png)
![\implies \ln \left((2435)/(979)\right)=0.050t](https://img.qammunity.org/2023/formulas/mathematics/college/adf5u71lkbs03okw4ih9r897f1owcyrvg1.png)
![\implies t=20\ln \left((2435)/(979)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/cox9opasj16d4m789am3wodalxpuwh4b63.png)
![\implies t=18.223\; \sf (3 \; d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/d47tqw39y65muxfk2x58d9q6kpn3yv6wn7.png)
The population will reach 2.2 million in 2018.