87.8k views
2 votes
Resolve into partial fraction x^2+1/x^3+1​​

1 Answer

3 votes

First we have to factorise the denominator
\rm{x^3+1.}

It can be factorised as,


\rm{x^3+1=(x+1)(x^2-x+1)}

Then the fraction can be written as,


\longrightarrow\rm{(x^2+1)/(x^3+1)=(x^2+1)/((x+1)(x^2-x+1))\quad\dots(1)}

This fraction can be resolved into partial fractions by writing it as the sum of a fraction having denominator
\rm{x+1} and a fraction having denominator
\rm{x^2-x+1.}

Since
\rm{x+1} is a first degree polynomial, the numerator of the fraction having this term as denominator should be a zero degree polynomial, or a constant term, assumed as
\rm{A.}

Since
\rm{x^2-x+1} is a second degree polynomial, the numerator of the fraction having this term as denominator should be a first degree polynomial, assumed as
\rm{Bx+C.}

So let,


\longrightarrow\rm{(x^2+1)/((x+1)(x^2-x+1))=(A)/(x+1)+(Bx+C)/(x^2-x+1)}


\small\text{$\longrightarrow\rm{(x^2+1)/((x+1)(x^2-x+1))=(A(x^2-x+1)+(Bx+C)(x+1))/((x+1)(x^2-x+1))}$}

Equating numerators,


\longrightarrow\rm{x^2+1=A(x^2-x+1)+(Bx+C)(x+1)}


\small\text{$\longrightarrow\rm{x^2+1}=\cal{(A+B)}\rm{x^2}+\cal{(-A+B+C)}\rm{x}+\cal{(A+C)}$}

Equating corresponding coefficients,


\rm{A+B=1}


\rm{-A+B+C=0}


\rm{A+C=1}

Solving these three equations we get,


\rm{A=(2)/(3)}


\rm{B=(1)/(3)}


\rm{C=(1)/(3)}

Thus,


\small\text{$\longrightarrow\rm{(x^2+1)/((x+1)(x^2-x+1))=(2)/(3(x+1))+(x+1)/(3(x^2-x+1))}$}


\small\text{$\longrightarrow\rm{(x^2+1)/((x+1)(x^2-x+1))=(1)/(3)\left[(2)/(x+1)+(x+1)/(x^2-x+1)\right]}$}

So (1) becomes,


\longrightarrow\underline{\underline{\bf{(x^2+1)/(x^3+1)=(1)/(3)\left[(2)/(x+1)+(x+1)/(x^2-x+1)\right]}}}

Hence the given fraction is resolved into partial fractions.

User Nonagon
by
3.5k points