a. Finding equation of line passing through A and parallel to BC.
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Since our line is parallel to BC, slope of the line is,
![\longrightarrow\rm{m_a=(y_B-y_C)/(x_B-x_C)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zq6447at30awf2k7zxw0t3x1djpazlqsc0.png)
![\longrightarrow\rm{m_a=(7-4)/(2-(-10))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dtydc183fkkv89p7uhs1m8hkk6pjfysps7.png)
![\longrightarrow\rm{m_a=(1)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pub4n32qxfaz624321k7agr5fxhsuucbmf.png)
Since our line passes through A, the equation will be,
![\longrightarrow\rm{y-y_A=m_a(x-x_A)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aytvy7wcjc4rt8j9ft035s2f2z2vw1t632.png)
![\longrightarrow\rm{y-(-2)=(1)/(4)(x-5)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ryhtbrudd24w41olh1y1o0bc2fcxa5804p.png)
![\longrightarrow\rm{\underline{\underline{x-4y-13=0}}\quad\quad\dots(1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fx8kd2xv3xbrdglw1xuftmkgggrlv5yd21.png)
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
b. Finding equation of line passing through B and perpendicular to AC.
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Since our line is perpendicular to AC, slope of the line is,
![\longrightarrow\rm{m_b=-(x_A-x_C)/(y_A-y_C)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t3vqfk3pbbp2pgjsq66sjxusb4n99z9yfe.png)
![\longrightarrow\rm{m_b=-(5-(-10))/(-2-4)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8qzkwpyi6aqssp7s2rhyy2q24mkutl5dx0.png)
![\longrightarrow\rm{m_b=(5)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nwcacwdtsnpmwpwqqy8z0m4junn0ccro4u.png)
Since our line passes through B, the equation will be,
![\longrightarrow\rm{y-y_B=m_b(x-x_B)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ohkdtebrzd680n4145kgm2ip05k4f3nv2v.png)
![\longrightarrow\rm{y-7=(5)/(2)(x-2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dqfz7kjv62l94fqju33k92f0ctoamj4j1p.png)
![\longrightarrow\rm{\underline{\underline{5x-2y+4=0}}\quad\quad\dots(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/juf3g10bb27jyuxt0o383vb2612ka2av2h.png)
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
c. Finding point of intersection of the above two lines.
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
From (1),
![\longrightarrow\rm{x=4y+13}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yng79b8kmep2rnl9y6ny3xud8rq92py0mj.png)
Putting this value of x in (2),
![\longrightarrow\rm{5(4y+13)-2y+4=0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3574bihkja69uinrkbja7k6fzhzxdh0aja.png)
![\longrightarrow\rm{18y+69=0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mor1t97atdf9vi0u8nfamkk42m23qbzry0.png)
![\longrightarrow\rm{y=-(23)/(6)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mpw58atihnqb4s5m0ay6y7oahyyhhfcapt.png)
Then,
![\longrightarrow\rm{x=4\left(-(23)/(6)\right)+13}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mwnsfsf2ggf47v3q2183m4g7v24wu0e3d2.png)
![\longrightarrow\rm{x=-(7)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ykdvto0mhk19vccurhzvvtkltjbtwm615l.png)
Hence the intersection point is
![\bf{\left(-(7)/(3),\ -(23)/(6)\right)}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/n9fthujq8pgcx0i072uu56nkgq5al2g8lt.png)