233k views
3 votes
The inverse of the function f (x) = e^x-e^- x/e^x+e^- x + 2 is given by

a.log (x - 2/x - 1 )^1 2
b.12loge (x - 1/3 - x )
c.&log (x/2 - x )^1 2 &
d.log (x - 1/3 - x )^1 2​

User Posita
by
7.9k points

1 Answer

7 votes

We're asked to find inverse of the function,


\longrightarrow\rm{f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2}

Take
\rm{y=f(x).}


\longrightarrow\rm{y=(e^x-e^(-x))/(e^x+e^(-x))+2}

Subtract 2.


\longrightarrow\rm{y-2=(e^x-e^(-x))/(e^x+e^(-x))}

We apply componendo - dividendo rule.


\rm{(a)/(b)=(c)/(d)\quad\iff\quad(b+a)/(b-a)=(d+c)/(d-c)}

Thus,


\longrightarrow\rm{(y-2)/(1)=(e^x-e^(-x))/(e^x+e^(-x))}


\Longrightarrow\rm{(1+(y-2))/(1-(y-2))=((e^x+e^(-x))+(e^x-e^(-x)))/((e^x+e^(-x))-(e^x-e^(-x)))}


\longrightarrow\rm{(y-1)/(3-y)=(2e^x)/(2e^(-x))}


\longrightarrow\rm{(e^x)/(e^(-x))=(y-1)/(3-y)}


\longrightarrow\rm{e^(2x)=(y-1)/(3-y)}


\longrightarrow\rm{(e^x)^2=(y-1)/(3-y)}

Take square root.


\longrightarrow\rm{e^x=\sqrt{(y-1)/(3-y)}}

Take natural logarithm.


\longrightarrow\rm{x=\log_e\sqrt{(y-1)/(3-y)}}


\longrightarrow\rm{x=(1)/(2)\log_e\left((y-1)/(3-y)\right)}

Now take
\rm{x=f^(-1)(y).}


\longrightarrow\rm{f^(-1)(y)=(1)/(2)\log_e\left((y-1)/(3-y)\right)}

Replace y by x and finally we get,


\longrightarrow\rm{\underline{\underline{f^(-1)(x)=(1)/(2)\log_e\left((x-1)/(3-x)\right)}}}

This is the inverse of the given function.

User Sagar Damani
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.