233k views
3 votes
The inverse of the function f (x) = e^x-e^- x/e^x+e^- x + 2 is given by

a.log (x - 2/x - 1 )^1 2
b.12loge (x - 1/3 - x )
c.&log (x/2 - x )^1 2 &
d.log (x - 1/3 - x )^1 2​

User Posita
by
3.0k points

1 Answer

7 votes

We're asked to find inverse of the function,


\longrightarrow\rm{f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2}

Take
\rm{y=f(x).}


\longrightarrow\rm{y=(e^x-e^(-x))/(e^x+e^(-x))+2}

Subtract 2.


\longrightarrow\rm{y-2=(e^x-e^(-x))/(e^x+e^(-x))}

We apply componendo - dividendo rule.


\rm{(a)/(b)=(c)/(d)\quad\iff\quad(b+a)/(b-a)=(d+c)/(d-c)}

Thus,


\longrightarrow\rm{(y-2)/(1)=(e^x-e^(-x))/(e^x+e^(-x))}


\Longrightarrow\rm{(1+(y-2))/(1-(y-2))=((e^x+e^(-x))+(e^x-e^(-x)))/((e^x+e^(-x))-(e^x-e^(-x)))}


\longrightarrow\rm{(y-1)/(3-y)=(2e^x)/(2e^(-x))}


\longrightarrow\rm{(e^x)/(e^(-x))=(y-1)/(3-y)}


\longrightarrow\rm{e^(2x)=(y-1)/(3-y)}


\longrightarrow\rm{(e^x)^2=(y-1)/(3-y)}

Take square root.


\longrightarrow\rm{e^x=\sqrt{(y-1)/(3-y)}}

Take natural logarithm.


\longrightarrow\rm{x=\log_e\sqrt{(y-1)/(3-y)}}


\longrightarrow\rm{x=(1)/(2)\log_e\left((y-1)/(3-y)\right)}

Now take
\rm{x=f^(-1)(y).}


\longrightarrow\rm{f^(-1)(y)=(1)/(2)\log_e\left((y-1)/(3-y)\right)}

Replace y by x and finally we get,


\longrightarrow\rm{\underline{\underline{f^(-1)(x)=(1)/(2)\log_e\left((x-1)/(3-x)\right)}}}

This is the inverse of the given function.

User Sagar Damani
by
3.4k points