Answer:
We reject H₀ we support the claim that the two proportion are different
Explanation:
Younger than 40 years old
Sample size n₁ = 700
x₁ = 348
p₁ = 348 / 700 p₁ = 0,497 p₁ = 49,7 %
Above 40 years old
Sample size n₂ = 650
x₂ = 290
p₂ = 290/ 700 p₂ = 0,414 p₂ = 41,4 %
p = ( n₁*p₁ + n₂*p₂ ) / n₁ + n₂
p = 700 * 0,497 + 650 * 0,414 ) / 700 + 650
p = ( 347.9 + 269,1 ) / 1350
p = 0,457 p = 45,7 %
q = 1 - p q = 54,3 % q = 0,543
CI is 90 % significance level is 10 % α = 10 % α = 0,1 α/2 = 0,05
zscore for α/2 from z- table is : z(c) = 1,64
Test Hypothesis
Null Hypothesis H₀ p₁ = p₂
Alternative Hypothesis Hₐ p₁ ≠ p₂
To calculate z(s) = ( p₁ - p₂ ) / √ pq/n₁ + pq/ n₂
p₁ - p₂ = 0,497 - 0,414 = 0,083
√ pq/n₁ + pq/ n₂ = √ 0,457*0,543/ 700 + 0,457*0,543/ 650
√ pq/n₁ + pq/ n₂ = √ 3,545*10⁻⁴ + 3,82 * 10⁻⁴
√ pq/n₁ + pq/ n₂ = 2,71 * 10⁻² = 0,0271
z(s) = 0,083/ 0,0271
z(s) = 3,06
Comparing z(s) and z(c)
|z(s)| > |z(c)|
Then z(s) is in the rejection region and we reject H₀