Answer:
![x=2+2√( 26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/m4h0g8j0rti058cou4egs0ed6aiwxf50rf.png)
![x=2-2√( 26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/l4ufdjxapokbjv7ztagygjmrqn14o6751c.png)
Explanation:
Given logarithmic equation:
![\log_(10)(x^(2)-4x)=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/piig89vd4werlsbjhd8box5q93fafs2tpf.png)
![\textsf{Apply log law}: \quad \log_ab=c \iff a^c=b](https://img.qammunity.org/2023/formulas/mathematics/high-school/6gdlo8rhd6eomfwa3ei6aljcti4k8l2qfi.png)
![\implies 10^2=x^2-4x](https://img.qammunity.org/2023/formulas/mathematics/high-school/nnuau02yx472by2oqtavfr1ivgrcf7gz3x.png)
![\implies 100=x^2-4x](https://img.qammunity.org/2023/formulas/mathematics/high-school/evj5vdy4wrfaqwjjsc0imicpagcnfnz0bd.png)
![\implies x^2-4x=100](https://img.qammunity.org/2023/formulas/mathematics/high-school/7jjlf3eygo0ypyxyyl6l0c9zp6cquurgcq.png)
Add the square of half the coefficient of the term in x to both sides of the equation:
![\implies x^2-4x+\left((-4)/(2)\right)^2=100+\left((-4)/(2)\right)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/8iz9e235uqysvf67n1c2174d300hd0a0e0.png)
![\implies x^2-4x+\left(-2\right)^2=100+\left(-2}\right)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/y3mk0hfw8j0xfugezl6cg185xsdla9sec0.png)
![\implies x^2-4x+4=100+4](https://img.qammunity.org/2023/formulas/mathematics/high-school/t6foq1kdbb7n8o926w6m41s1ftf7droosf.png)
![\implies x^2-4x+4=104](https://img.qammunity.org/2023/formulas/mathematics/high-school/ci0g85pzr4q4rmj0wrwgt4rts1fj9e089r.png)
Factor the perfect square trinomial on the left side of the equation:
![\implies (x-2)^2=104](https://img.qammunity.org/2023/formulas/mathematics/high-school/begdove599vpt2uyhs7p3599i8wp1am6vv.png)
Square root both sides:
![\implies x-2=\pm √(104)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdyj7641i1kuhni070ntlpck84wmierpu6.png)
![\implies x-2=\pm √(4 \cdot 26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r432zpabbdp9ft0t8lkr2ua9q894jmecxa.png)
![\implies x-2=\pm √(4) √( 26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/z4uufppev5fc162np7whz3c3ivi3acocr4.png)
![\implies x-2=\pm 2√( 26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ucsdatlkgh6qyti8ibomlei9tfn8u6z9jf.png)
Add 2 to both sides:
![\implies x=2\pm 2√( 26)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wtoj1v9qis8icjphj0cfrp9uksp508loxn.png)
Therefore, the solutions are: