174k views
4 votes
Solve the logarithmic equation. log 10 (x raise to power 2 - 4x )=2​

1 Answer

4 votes

Answer:


x=2+2√( 26)


x=2-2√( 26)

Explanation:

Given logarithmic equation:


\log_(10)(x^(2)-4x)=2


\textsf{Apply log law}: \quad \log_ab=c \iff a^c=b


\implies 10^2=x^2-4x


\implies 100=x^2-4x


\implies x^2-4x=100

Add the square of half the coefficient of the term in x to both sides of the equation:


\implies x^2-4x+\left((-4)/(2)\right)^2=100+\left((-4)/(2)\right)^2


\implies x^2-4x+\left(-2\right)^2=100+\left(-2}\right)^2


\implies x^2-4x+4=100+4


\implies x^2-4x+4=104

Factor the perfect square trinomial on the left side of the equation:


\implies (x-2)^2=104

Square root both sides:


\implies x-2=\pm √(104)


\implies x-2=\pm √(4 \cdot 26)


\implies x-2=\pm √(4) √( 26)


\implies x-2=\pm 2√( 26)

Add 2 to both sides:


\implies x=2\pm 2√( 26)

Therefore, the solutions are:


  • x=2+2√( 26)

  • x=2-2√( 26)