129k views
4 votes
NO LINKS!! Find the 10 terms of the sequence.

a1 = x, d = 3x

a1=
a2=
a3=
a4=
a5=
a6=
a7=
a8=
a9=
a10=

1 Answer

4 votes

Answer:


x, \; 4x, \; 7x, \; 10x, \; 13x, \; 16x, \; 19x, \; 22x, \; 25x, \; 28x, ...

Explanation:


\boxed{\begin{minipage}{8 cm}\underline{General form of an arithmetic sequence}\\\\$a_n=a+(n-1)d$\\\\where:\\\phantom{ww}$\bullet$ $a_n$ is the nth term. \\ \phantom{ww}$\bullet$ $a$ is the first term.\\\phantom{ww}$\bullet$ $d$ is the common difference between terms.\\\phantom{ww}$\bullet$ $n$ is the position of the term.\\\end{minipage}}

Given:

  • a = x
  • d = 3x

Substitute the given values of a and d into the formula to create an equation for the nth term:


\implies a_n=x+(n-1)3x


\implies a_n=x+3nx-3x


\implies a_n=3nx-2x

To find the first 10 terms of the given arithmetic sequence, substitute n = 1 through 10 into the equation.


\begin{aligned}\implies a_1&=3(1)x-2x\\&=3x-2x\\&=x\end{aligned}


\begin{aligned}\implies a_2&=3(2)x-2x\\&=6x-2x\\&=4x\end{aligned}


\begin{aligned}\implies a_3&=3(3)x-2x\\&=9x-2x\\&=7x\end{aligned}


\begin{aligned}\implies a_4&=3(4)x-2x\\&=12x-2x\\&=10x\end{aligned}


\begin{aligned}\implies a_5&=3(5)x-2x\\&=15x-2x\\&=13x\end{aligned}


\begin{aligned}\implies a_6&=3(6)x-2x\\&=18x-2x\\&=16x\end{aligned}


\begin{aligned}\implies a_7&=3(7)x-2x\\&=21x-2x\\&=19x\end{aligned}


\begin{aligned}\implies a_8&=3(8)x-2x\\&=24x-2x\\&=22x\end{aligned}


\begin{aligned}\implies a_9&=3(9)x-2x\\&=27x-2x\\&=25x\end{aligned}


\begin{aligned}\implies a_(10)&=3(10)x-2x\\&=30x-2x\\&=28x\end{aligned}

Therefore, the first 10 terms of the given arithmetic sequence are:


  • x, \; 4x, \; 7x, \; 10x, \; 13x, \; 16x, \; 19x, \; 22x, \; 25x, \; 28x, ...
User XCRKx TyPHooN
by
4.0k points