72.2k views
4 votes
NO LINKS!!

Find the average rate of change of the function from x1 to x2.
function f(x) = -9x + 4
x-values x1 = -5, x2 = 0

User Tggagne
by
6.1k points

1 Answer

6 votes

Answer:

-9

Explanation:

Given function:


f(x)=-9x+4

Given x-values:

  • x₁ = -5
  • x₂ = 0

Calculate the value of the function for the two given values of x:


\begin{aligned}\implies f(x_1)&=-9(-5)+4\\&=45+4\\&=49\end{aligned}


\begin{aligned}\implies f(x_2)&=-9(0)+4\\&=0+4\\&=4\end{aligned}


\boxed{\begin{minipage}{6.3 cm}\underline{Average rate of change of function $f(x)$}\\\\$(f(b)-f(a))/(b-a)$\\\\over the interval $a \leq x \leq b$\\\end{minipage}}

As -5 < 0:

  • a = x₁ = -5
  • b = x₂ = 0

Therefore:


\begin{aligned} \implies \textsf{Average rate of change}&amp;=(f(x_2)-f(x_1))/(x_2-x_1)\\\\&amp;=(4-49)/(0-(-5))\\\\&amp;=(-45)/(5)\\\\&amp;=-9\end{aligned}

User Arnaudauroux
by
5.6k points