Answer:
![(8)/(12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/srljza1potpryvnkex1xv2f6b4g8givbpo.png)
Explanation:
Let the unknown fraction be:
If the sum of the numerator and denominator is 20 then:
![\implies a+b=20](https://img.qammunity.org/2023/formulas/mathematics/college/k7rnle0vt3meb97zxe9z7grokp3o4szp1e.png)
Rewrite the equation to isolate b:
![\implies b=20-a](https://img.qammunity.org/2023/formulas/mathematics/college/9ki079fso2af0mhdn50b9rqj5n7cpkdjf0.png)
If the fraction is equal to 2/3 then:
![\implies (a)/(b)=(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/kqh2qmu6l7654s9p4tvlfnqvon1lajpfux.png)
Cross multiply:
![\implies 3a=2b](https://img.qammunity.org/2023/formulas/mathematics/college/5ym5d12bpgv81x519ruvmui03bw1aambry.png)
Substitute the expression for b into the cross-multiplied equation and solve for a:
![\implies 3a=2(20-a)](https://img.qammunity.org/2023/formulas/mathematics/college/4yyv8mv0hpyh38g177x3ej5zu5cghok46w.png)
![\implies 3a=40-2a](https://img.qammunity.org/2023/formulas/mathematics/college/nxfmpy5zxgv5dbol6wrqmkbkx2a3hrppxc.png)
![\implies 5a=40](https://img.qammunity.org/2023/formulas/mathematics/college/snhiecogrsgvl88rvu3q1ozl6z2gtbl66y.png)
![\implies a=8](https://img.qammunity.org/2023/formulas/mathematics/college/lrklsg8is178czpq9u4dc5f5evhoxh7kj6.png)
Substitute the found value of a into the equation for b and solve for b:
![\implies b=20-8](https://img.qammunity.org/2023/formulas/mathematics/college/iztw3rs2jubnjzvvs7m19hyuayqv2ocgr5.png)
![\implies b=12](https://img.qammunity.org/2023/formulas/mathematics/college/4j2993mst9gbcfn8n5ew7k3ogj1stvfafg.png)
Therefore, the fraction for which the sum of the numerator and denominator is 20, and the value of the fraction is equal to 2/3 is: