26.8k views
2 votes
What is tan(sin^-1(x/2))

with steps pls

User Felix Too
by
8.3k points

1 Answer

5 votes

Answer:


(x√(4-x^2))/(4-x^2)

Explanation:

Given:


\tan \left(\sin^(-1)\left((x)/(2)\right)\right)


\boxed{\begin{minipage}{5cm}\underline{Trigonometric Identity}\\\\$\tan(\arcsin(x))=(x)/(√(1-x^2))$\\ \end{minipage}}

Use the tan(arcsin(x)) trigonometric identity and replace x for (x/2):


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=\frac{\left((x)/(2)\right)}{\sqrt{1-\left((x)/(2)\right)^2}}

Simplify the denominator:


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=\frac{\left((x)/(2)\right)}{\sqrt{1-(x^2)/(4)}}


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=\frac{\left((x)/(2)\right)}{\sqrt{(4-x^2)/(4)}}


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=(\left((x)/(2)\right))/((√(4-x^2))/(√(4)))}


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=(\left((x)/(2)\right))/((√(4-x^2))/(2))}


\textsf{Apply the fraction rule}: \quad ((a)/(c))/((b)/(c))=(a)/(b)


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=(x)/(√(4-x^2))

Multiply the numerator and denominator by the denominator to eliminate the radical from the denominator:


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=(x)/(√(4-x^2)) \cdot (√(4-x^2))/(√(4-x^2))

Simplify:


\implies \tan\left(\arcsin \left((x)/(2)\right)\right)=(x√(4-x^2))/(4-x^2)

User Durga Mohan
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories