Answer:
![a_8=-(729)/(15625)](https://img.qammunity.org/2023/formulas/mathematics/college/vg4j35h2ffv7bu7w8ewc6ejdfp7toj3gpr.png)
Explanation:
![\boxed{\begin{minipage}{5.5 cm}\underline{Geometric sequence}\\\\$a_n=ar^(n-1)$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\\phantom{ww}$\bullet$ $r$ is the common ratio.\\\phantom{ww}$\bullet$ $a_n$ is the $n$th term.\\\phantom{ww}$\bullet$ $n$ is the position of the term.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/1cw19ep8nzdd1k73r900nzbl7xbw7f92pc.png)
Given geometric sequence:
![(5)/(3),\;-1,\;(3)/(5),\;...](https://img.qammunity.org/2023/formulas/mathematics/college/h6yunn18r36hgnhpip9cc654r2azxn5e1u.png)
To find the common ratio, divide a term by the previous term:
![\implies r=(a_3)/(a_2)=((3)/(5))/(-1)=-(3)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/z7n8nkxrx9zhx74rzm6toshfbgsgzsofja.png)
Substitute the found common ratio and given first term into the formula to create an equation for the nth term:
![a_n=(5)/(3)\left(-(3)/(5)\right)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/fm8q1y6kmzmiiefn7rxplvfgvearlwigbt.png)
To find the 8th term, substitute n = 8 into the equation:
![\implies a_8=(5)/(3)\left(-(3)/(5)\right)^(8-1)](https://img.qammunity.org/2023/formulas/mathematics/college/tq40zib33d5pa3btz27u92e6d2v3r3a58h.png)
![\implies a_8=(5)/(3)\left(-(3)/(5)\right)^(7)](https://img.qammunity.org/2023/formulas/mathematics/college/nnvo7ort9nzl8dnxn7jwtdhlihwq3fmsp9.png)
![\implies a_8=(5)/(3)\left(-(2187)/(78125)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/kejqbd3wv45a8ezxlgut4wjgf625zelj9k.png)
![\implies a_8=-(729)/(15625)](https://img.qammunity.org/2023/formulas/mathematics/college/u0hwwv1n41lblgvob7npu2l6c5ov08arw7.png)