213k views
3 votes
The acute angle between the vectors a=i-kj and b=i+jis 60° Calculate the possible values of k

no clue how to reach the answer ​

User Linkrules
by
6.2k points

1 Answer

5 votes

Answer:

k = (-55) / 8

k = (-3005) / 8

k = (-255 - sqrt(65025 - 510((-255 + sqrt(65025 - 510((-255 + sqrt(65025 - 510(0.309016^2))) / 2)^2)) / 2)^2)) / 2

k = (-255 - sqrt(65025 - 510((-255 + sqrt(65025 - 510((-255 + sqrt(65025 - 1469.59)))))^2)) / 2)

To find the acute angle between two vectors, we can use the dot product formula:

angle = arccos((a * b) / (||a|| * ||b||))

where a and b are the vectors, * is the dot product, and ||a|| and ||b|| are the magnitudes of the vectors a and b, respectively.

In this case, the dot product of a and b is (i - kj) * (i + j) = i^2 - kj * i + kj * i + kj^2 = 2i - k^2j

The magnitudes of the vectors a and b are ||a|| = sqrt(i^2 + (-kj)^2) = sqrt(1 + k^2) and ||b|| = sqrt(i^2 + j^2) = sqrt(2).

Substituting these values into the formula above, we get:

angle = arccos((2i - k^2j) / (sqrt(1 + k^2) * sqrt(2)))

Since the angle is given to be 60 degrees, we can set this equal to 60 degrees and solve for k:

60 = arccos((2i - k^2j) / (sqrt(1 + k^2) * sqrt(2)))

We can use the inverse cosine function to solve for k:

k = sqrt(1 / (cos(60)^2 - (2i / sqrt(1 + k^2) * sqrt(2))^2))

Since cos(60) = 0.5, we can substitute this value in and solve for k:

k = sqrt(1 / (0.5^2 - (2i / sqrt(1 + k^2) * sqrt(2))^2))

k = sqrt(1 / (0.25 - (2i / sqrt(1 + k^2) * sqrt(2))^2))

k = sqrt(1 / (0.25 - (4i^2 / (1 + k^2) * 2)^2))

k = sqrt(1 / (0.25 - (16 / (1 + k^2))^2))

k = sqrt(1 / (0.25 - 256 / (1 + k^2)^2))

k = sqrt((1 + k^2)^2 / (256 - (1 + k^2)^2))

k = sqrt((1 + k^4) / (256 - 1 - 2k^2 - k^4))

k = sqrt((k^4 + 1) / (255 - 2k^2))

We can then solve for the roots of this equation to find the possible values of k:

k = sqrt((k^4 + 1) / (255 - 2k^2))

k^4 - (255 - 2k^2)k^2 + 1 = 0

This is a quartic equation and can be solved using the quartic formula:

k = sqrt((-b +- sqrt(b^2 - 4ac)) / 2a)

where a, b, and c are the coefficients of the polynomial. In this case, a = 1, b = -(255 - 2k^2), and c = 1.

Substituting these values into the quartic formula, we get:

k = sqrt((-(-(255 - 2k^2)) +- sqrt((-(255 - 2k^2))^2 - 4 * 1 * 1)) / 2 * 1)

k = sqrt((255 - 2k^2 +- sqrt((255 - 2k^2)^2 - 4)) / 2)

k = sqrt((255 - 2k^2 +- sqrt(255^2 - 510k^2 + 4k^4)) / 2)

k = sqrt((255 - 2k^2 +- sqrt(255^2 - 510k^2)) / 2)

k = sqrt((255 - 2k^2 +- sqrt(65025 - 510k^2)) / 2)

Solving for the roots of this equation gives us the possible values of k:

k = (-255 + sqrt(65025 - 510k^2)) / 2

k = (-255 - sqrt(65025 - 510k^2)) / 2

The first equation gives us one possible value of k:

k = (-255 + sqrt(65025 - 510k^2)) / 2

Substituting k = (-255 + sqrt(65025 - 510k^2)) / 2 into the second equation gives us the second possible value of k:

k = (-255 - sqrt(65025 - 510((-255 + sqrt(65025 - 510k^2)) / 2)^2)) / 2

Simplifying this expression gives us the final possible value of k:

k = (-255 - sqrt(65025 - 510((-255 + sqrt(65025 - 510((-255 + sqrt(65025 - 510k^2)) / 2)^2)) / 2)^2)) / 2

Therefore, the possible values of k are:

k = (-255 + sqrt(65025 - 510k^2)) / 2

k = (-255 - sqrt(65025 - 510((-255 + sqrt(65025 - 510k^2)) / 2)^2)) / 2

solve for k in each

To solve for k in the first equation, we can isolate k by moving everything else to the right side of the equation:

k = (-255 + sqrt(65025 - 510k^2)) / 2

2k = -255 + sqrt(65025 - 510k^2)

2k + 255 = sqrt(65025 - 510k^2)

(2k + 255)^2 = 65025 - 510k^2

4k^2 + 1020k + 65025 = 65025 - 510k^2

4k^2 + 1530k + 65025 = 0

This is a quadratic equation, and we can use the quadratic formula to solve for k:

k = (-b +- sqrt(b^2 - 4ac)) / 2a

where a, b, and c are the coefficients of the polynomial. In this case, a = 4, b = 1530, and c = 65025.

Substituting these values into the quadratic formula gives us:

k = (-1530 +- sqrt(1530^2 - 4 * 4 * 65025)) / 2 * 4

k = (-1530 +- sqrt(3080400 - 2601000)) / 8

k = (-1530 +- sqrt(477900)) / 8

k = (-1530 +- sqrt(222725)) / 8

k = (-1530 + 1475) / 8

k = (-55) / 8

k = (-1530 - 1475) / 8

k = (-3005) / 8

Therefore, the solutions to the first equation are:

k = (-55) / 8

k = (-3005) / 8

User Giorgina
by
6.0k points