Answer:
15 feet
Explanation:
Given quadratic function:
![f(x)=-(4)/(9)x^2+(24)/(9)x+11](https://img.qammunity.org/2023/formulas/mathematics/college/vuimbktt790z9qledwevo799dwbzs3abji.png)
where f(x) is the height (in feet) and x is the horizontal distance (in feet) from the end of the diving board.
The maximum height of the diver is the y-value of the vertex (h, k) of the function.
![\boxed{h=-(b)/(2a) \quad \quad k=f(h)}](https://img.qammunity.org/2023/formulas/mathematics/college/z8u4uohoruuzv04lojbt3hgqi227ep27ap.png)
where f(x) = ax² + bx + c
From inspection of the function:
![a=-(4)/(9) \quad b=(24)/(9) \quad c=11](https://img.qammunity.org/2023/formulas/mathematics/college/u79do70yq6r3t5pii0bftry83tzq7rb3dr.png)
Substitute the values of a and b into the formula for h to find the x-value of the vertex:
![\implies h=-((24)/(9))/(2\left(-(4)/(9)\right))](https://img.qammunity.org/2023/formulas/mathematics/college/3gwk9npatf2lbtr1t33oqpzd29jz0wxdgx.png)
![\implies h=((24)/(9))/((8)/(9))](https://img.qammunity.org/2023/formulas/mathematics/college/nyrenhzwxwg865ax2lisw8xzhhekj49amv.png)
![\implies h=(24)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/nwdzk1ht047acxtvn3ytfq5m85tn9ft5a3.png)
![\implies h=3](https://img.qammunity.org/2023/formulas/mathematics/college/sza9fwymyphgr04a0qp8ao80sa6rhsqztv.png)
Substitute this into the function to find the y-value of the vertex, and therefore the maximum height of the diver:
![\begin{aligned}\implies k=f(3)&=-(4)/(9)(3)^2+(24)/(9)(3)+11\\&=-4+8+11\\&=15 \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/a10lzn385ejrhezmb1np5g3vm35eoyb42o.png)
Therefore, the maximum height of the diver is 15 feet.