84.8k views
1 vote
NO LINKS!! Please help me with this statement Part 2mm​

NO LINKS!! Please help me with this statement Part 2mm​-example-1
User JesusS
by
4.6k points

2 Answers

2 votes

Answer:


f(x)=2x^2+8x-5

Explanation:


\boxed{\begin{minipage}{5.6 cm}\underline{Vertex form of a quadratic equation}\\\\$y=a(x-h)^2+k$\\\\where:\\ \phantom{ww}$\bullet$ $(h,k)$ is the vertex. \\ \phantom{ww}$\bullet$ $a$ is some constant.\\\end{minipage}}

Given:

  • Vertex = (-2, -13)
  • Point = (0, -5)

Substitute the given vertex and point into the Vertex formula and solve for a:


\implies -5=a(0-(-2))^2+(-13)


\implies -5=a(0+2)^2-13


\implies -5=4a-13


\implies 4a=8


\implies a=2

Substitute the given vertex and found value of a into the Vertex formula:


y=2(x+2)^2-13

The standard form of a quadratic function is f(x) = ax² + bx + c

Expand the function in vertex form to standard form:


\implies y=2(x^2+4x+4)-13


\implies y=2x^2+8x+8-13


\implies y=2x^2+8x-5

User BennyKok
by
4.2k points
4 votes

Answer:

  • y = 2x² + 8x - 5

--------------------------------------

Vertex form of a quadratic function:

  • y = a(x - h)² + k, where (h, k) is vertex and a - constant

Given (h, k) = (-2, -13) and a point (0, - 5).

Substitute all into equation and solve for a:

  • -5 = a(0 - (-2))² - 13
  • -5 = 4a - 13
  • 4a = 13 - 5
  • 4a = 8
  • a = 2

The parabola is:

  • y = 2(x + 2)² - 13

Convert it to the standard form:

  • y = 2(x + 2)² - 13
  • y = 2(x² + 4x + 4) - 13
  • y = 2x² + 8x + 8 - 13
  • y = 2x² + 8x - 5
User RMD
by
4.6k points