Answer:
![f(x)=(1)/(2)(2x-7)(x+4)(x-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fscfkupcd4y5robr178o5nk8fmyyjjcqh5.png)
Explanation:
Cubic polynomial in intercept form:
![f(x)=(x-p)(x-q)(x-r)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bok32u3udj9di5rct1zwt1k5ejxxtr9l4l.png)
where p, q and r are the zeros.
Given:
- Zeros at x = -4 and x = 6
- Passes through the point (2, 36)
Substitute the zeros into the formula:
![f(x)=(x-p)(x+4)(x-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hnj9sp6xdwctc4yrr61n8yq4wiehd3y4wu.png)
Substitute the point into the equation and solve for p:
![\implies (2-p)(2+4)(2-6)=36](https://img.qammunity.org/2023/formulas/mathematics/high-school/a3bxmjztn622eby01whtkzz8g79cocqhiz.png)
![\implies (2-p)(6)(-4)=36](https://img.qammunity.org/2023/formulas/mathematics/high-school/i040suwxnld8emyniwf0i33ml3gv85olcq.png)
![\implies -24(2-p)=36](https://img.qammunity.org/2023/formulas/mathematics/high-school/tv0u0ek6kc8c6siostn025yt1evwehsu4t.png)
![\implies 2-p=-(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pulfrz5su626t45ad5ujb2fxmmkcyf1eby.png)
![\implies p=(7)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kct8oy6edosgu1i4o893aono8t1rrl2hfz.png)
Therefore:
![f(x)=\left(x-(7)/(2)\right)(x+4)(x-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tvah843axga7psgyx5n0i8lk9he9pu6qjx.png)
Factor out ¹/₂ from the first parentheses:
![f(x)=(1)/(2)(2x-7)(x+4)(x-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fscfkupcd4y5robr178o5nk8fmyyjjcqh5.png)