207k views
4 votes
STEM

Science Challenge

Rockin’ Around the Park
You are a geologist who teaches at a university. You receive the following letter from a local park
ranger.
Dear Professor Rubble,
Our park has some magnificent rock formations along our hiking trails. We receive many questions
from park visitors about how these rock formations were created, and how long it took for them to
form. One visitor even claimed that the same exact rock formation existed near her home thousands
of kilometers away. How can this be possible?
To answer these questions, can you help us develop a model of the Earth processes that shape and
change Earth’s surface that we can display in our nature center? We would also like an article to
accompany the model. The article should explain the model, as well as the time and spatial scales
involved in the processes that form and change rocks on Earth’s surface.
Yours sincerely,
Flint Cobblestone
Q) 1 :How is it possible that identical rock formations can exist thousands of kilometers apart?
Q) 2 :What clues would you look for in the identical rock formations to prove that they formed at the same
time? How might you incorporate this information in your model?


Q) 3 :What processes could have separated the rock formations over time?
Q) 4 :How might you incorporate this information in your model?

Q) 5 :The park contains mountain ranges. How could you determine how and when the mountain ranges
formed?


Q) 6 : How could you incorporate this information in your model?


Q) 7 : Do weathering and erosion cause fast or slow changes to Earth’s surface? Do they affect large or
small areas?
Some types of weathering and erosion occur quickly. A landslide, for example, can quickly transport
and break down Earth materials. Other types of weathering and erosion take place over millions of
years. These processes occur on both large scales (example, mountain ranges) and small scales
(example: a boulder). You could have two separate models to show different time and spatial scales.
One model might show the slow weathering and erosion of a rock using drops of water to simulate
rainfall. The second model might show the fast weathering and erosion of a mountainside during a
landslide triggered by an earthquake.

Q) 8 : How might you include this information in your model?
To model weathering, you could put rocks in a container and shake it many times. You could use
water or a fan to model erosion by rivers or wind.

Q) 9 : Which rock cycle processes will you include in your model? How will you model the sources of energy
that drive these processes?
Models should include weathering, erosion, deposition, compaction, cementation, melting, cooling,
heat, and pressure. Students might use a fan to model wind energy or a source of heat to model
energy from Earth’s interior.

Q) 10 : How will you model processes that occur on different time and spatial scales?

Develop Your Model
Use your information from the questions to construct your model and
prepare your article for the park to display at their nature center.

Models will vary, but should include processes that describe the cycling of Earth materials and the
flow of energy that drives the cycling. Examples of processes include weathering, erosion, deposition,
compaction, cementation, melting, crystallization, pressure, deformation, subduction, and seafloor
spreading.

Evaluate Your Model
After completing your model, identify the model elements in the table below.
Model Elements Descriptions
Components
(What are the different
parts of my model?)



Relationships
(How do the components
of my model interact?)



Connections
(How does my model help
me understand the
phenomenon?)



As the final part of your homework, construct an article that will accompany your model at the park’s
nature center. Your article should explain how Earth processes shape and change rocks on Earth’s
surface at different time and spatial scales.
Outline your article in the space below. Organize your central ideas into a structure that facilitates
understanding. Next, add relevant content including the evidence and reasoning that supports each
central idea. When you are finished with your outline, write your article in your Science Notebook.
Students’ articles should show an understanding that geoscience processes have changed Earth’s
surface at varying time and spatial scales. They should use evidence and reasoning to construct their
explanations for how the mountains and the rock formations in the park formed. They should identify
and describe the time and spatial scales involved (slow, large-scale, fast, small-scale).

Congratulations! You have reached the end of the science challenge.

User Simplfuzz
by
3.7k points

2 Answers

0 votes
Q7 : just took the test.
User Mcsoini
by
2.7k points
3 votes

Answer:

Hope this helps ;) don't forget to rate this answer !

Step-by-step explanation:

It is possible that identical rock formations can exist thousands of kilometers apart because of the rock cycle, a process that involves the continuous transformation of rocks through various stages such as weathering, erosion, deposition, and more.

To prove that the identical rock formations formed at the same time, geologists can look for clues such as the presence of the same type of minerals, the same layering or structure, and similar levels of weathering or erosion. This information can be incorporated into the model by including representations of these clues and explaining their significance in the rock cycle.

Processes that could have separated the rock formations over time include tectonic movement, erosion, and weathering. These processes can be incorporated into the model by including representations of tectonic plates and showing how they can move and collide, as well as by including examples of erosion and weathering and explaining their role in the rock cycle.

To determine how and when mountain ranges formed, geologists can study the rock formations, the types of minerals present, and the levels of weathering and erosion. This information can be incorporated into the model by including representations of different types of rock formations and explaining how they were formed through processes such as mountain building and erosion.

Weathering and erosion can cause both fast and slow changes to Earth's surface, and can affect both large and small areas. To include this information in the model, you could have two separate models to show different time and spatial scales. One model might show the slow weathering and erosion of a rock, while the second model might show the fast weathering and erosion of a mountainside during a landslide.

To model weathering and erosion, you could put rocks in a container and shake it many times to simulate weathering, or use water or a fan to model erosion by rivers or wind. You could also use a source of heat to model energy from Earth's interior, or a fan to model wind energy.

In your model, you should include processes that describe the cycling of Earth materials and the flow of energy that drives the cycling. These processes include weathering, erosion, deposition, compaction, cementation, melting, crystallization, pressure, deformation, subduction, and seafloor spreading.

In your article, you could start by introducing the rock cycle and explaining the various processes involved. You could then describe how these processes shape and change rocks on Earth's surface at different time and spatial scales, using examples to illustrate your points. You could also include information about the clues that geologists look for to determine the history of a rock formation, and how these clues can be used to understand the rock cycle. Finally, you could conclude by summarizing the key points and explaining the significance of the rock cycle in understanding the Earth's surface.

User Vivek S
by
3.3k points