Answer:
Largest angle in ∆ABC is angle BCA = 65°
Explanation:
angle CAB = 62° (Alternate angles)
angle E + 127° = 180° (Supplementary angles)
or, angle E = 180° - 127° = 53°
angle E = angle ABC
or, angle ABC = 53° (Alternate angles)
angle ABC + angle BCA + angle CAB = 180° (Sum of all angles of a triangle)
or, 53° + angle BCA + 62° = 180°
or, angle BCA = 180° - 53° - 62°
or, angle BCA = 65°