154k views
1 vote
What is the equation of the line that passes through the point (-1,6) and has a y-intercept of -5

1 Answer

0 votes

well, since the y-intercept is at -5, or namely when the line hits the y-axis is at -5, that's when x = 0, so the point is really (0 , -5), and we also know another point on the line, that is (-1 ,6), to get the equation of any straight line, we simply need two points off of it, so let's use those two


\stackrel{y-intercept}{(\stackrel{x_1}{0}~,~\stackrel{y_1}{-5})}\qquad (\stackrel{x_2}{-1}~,~\stackrel{y_2}{6}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{(-5)}}}{\underset{run} {\underset{x_2}{-1}-\underset{x_1}{0}}} \implies \cfrac{6 +5}{-1} \implies \cfrac{ 11 }{ -1 } \implies - 11


\begin{array} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-5)}=\stackrel{m}{- 11}(x-\stackrel{x_1}{0}) \implies y +5 = - 11 ( x -0) \\\\\\ y+5=-11x\implies {\Large \begin{array}{llll} y=-11x-5 \end{array}}

User Michael Lafayette
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories