Answer:
Function I
Explanation:
Differentiate each function.
Function I
![f(x)=e^(4-x)](https://img.qammunity.org/2023/formulas/mathematics/college/qavfjb3fwk0xa2i8kf34wim0ktvfmriwry.png)
![\boxed{\begin{minipage}{5.5 cm}\underline{Differentiating $e^(f(x))$}\\\\If $y=e^(f(x))$, then $\frac{\text{d}y}{\text{d}x}=f\:'(x)e^(f(x))$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wv8gxnfy10paqu31z60y6ckn4tqvzsqecn.png)
![f'(x)=-e^(4-x)](https://img.qammunity.org/2023/formulas/mathematics/college/99mvao4r5gi3zj5sxzwsgty2g7g60dojla.png)
The domain of f'(x) is all real numbers: (-∞, ∞)
Therefore f(x) is differentiable for all values of x over the interval (-5, 5).
Function II
![f(x)=|4-x|](https://img.qammunity.org/2023/formulas/mathematics/college/33m0ztow92v0ggn7sbzov0mdopz5ekik4m.png)
![\boxed{\begin{minipage}{6.5 cm}\underline{Differentiating an absolute value function}\\\\$|f(x)|'=(f(x))/(|f(x)|)f'(x)$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/kwrxqyxcgd4frzjyng8inmwpn3zg9myzan.png)
![f'(x)=-(4-x)/(|4-x|)](https://img.qammunity.org/2023/formulas/mathematics/college/7g6vavivp3us7ataqh9r1mo3s73pryqtk3.png)
The domain of f'(x) is all real numbers except x = 4: (-∞, 4) ∪ (4, ∞)
Therefore, f(x) is not differentiable for all values of x over the interval (-5, 5).
Function III
![\begin{aligned}f(x)&=\sqrt[3]{4-x}\\&=(4-x)^{(1)/(3)}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/fn4ypfeksfl273wryabh87xgsuosufzptr.png)
![\boxed{\begin{minipage}{7 cm}\underline{Differentiating $[f(x)]^n$}\\\\If $y=[f(x)]^n$, then $\frac{\text{d}y}{\text{d}x}=n[f(x)]^(n-1) f'(x)$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/ru6yqsooqddix160q9uosrb7y4hacb089p.png)
Therefore:
![\begin{aligned}f'(x)&=(1)/(3)(4-x)^{(1)/(3)-1} \cdot -1\\&=-(1)/(3)(4-x)^{-(2)/(3)}\\&=-\frac{1}{3(4-x)^{(2)/(3)}}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/dmg8sdnv31y3v6rqm754srxti1f4ckzkgx.png)
The domain of f'(x) is all real numbers except x = 4: (-∞, 4) ∪ (4, ∞)
Therefore, f(x) is not differentiable for all values of x over the interval (-5, 5).
Function 4
![f(x)=(4-x)^{(2)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/rymeegtswwt1gp1iy8kpydqwsafv8btk7r.png)
![\boxed{\begin{minipage}{7 cm}\underline{Differentiating $[f(x)]^n$}\\\\If $y=[f(x)]^n$, then $\frac{\text{d}y}{\text{d}x}=n[f(x)]^(n-1) f'(x)$\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/ru6yqsooqddix160q9uosrb7y4hacb089p.png)
Therefore:
![\begin{aligned}f'(x)&=(2)/(3)(4-x)^{(2)/(3)-1} \cdot -1\\&=-(2)/(3)(4-x)^{-(1)/(3)}\\&=-\frac{2}{3(4-x)^{(1)/(3)}}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/elfw0hwe3cxa5lf7afnfwwf19nk4nwiz0y.png)
The domain of f'(x) is all real numbers except x = 4: (-∞, 4) ∪ (4, ∞)
Therefore, f(x) is not differentiable for all values of x over the interval (-5, 5).