Answer:
13.3 ft
Explanation:
![\boxed{\begin{minipage}{4 cm}\underline{Area of a triangle}\\\\$A=(1)/(2)bh$\\\\where:\\ \phantom{ww}$\bullet$ $b$ is the base. \\ \phantom{ww}$\bullet$ $h$ is the height.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2wss076f54mlwwcr211ixin1xltg541vtr.png)
The surface area of a square-based pyramid is made up of:
- 1 square (the base)
- 4 congruent triangles (the sides)
Given:
- Total SA = 158 feet²
- s = 5 feet
- h = l feet
Find the area of the square base and the area of one of the triangles by substituting the given values into the formulas:
![\textsf{Area of the square base} = 5^2 = 25\; \sf ft^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/1beur4kvo6xemvxg48l22ig8bv7et9x7q7.png)
![\textsf{Area of one of the side triangles} = (1)/(2) \cdot 5 \cdot l= 2.5l \; \sf ft^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/lwv3y8t2vhdo15c78wb1zb22x13uci2eup.png)
Substitute these values along with the given total surface area into the formula and solve for l:
![\begin{aligned}\textsf{Total Surface Area}&=\sf square+4\;triangles\\\implies 158&=25+4\left(2.5l)\\158&=25+10l\\133&=10l\\l&=(133)/(10)\\l&=13.3\; \sf ft\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1xq5nqau69bjylirtrj3okzzjch3u8q4x4.png)
Therefore, the missing length is 13.3 feet.