156k views
0 votes
What are the roots of the polynomial equations

x^2+x-72=0

X^2-12x+20

0=x^2-4x-60

X^2+24=-11x

0=x^2-x-72

1 Answer

2 votes

Answer:

A) x = -9, x = 8

B) x = 2, x = 10

C) x = -6, x = 10

D) x = -8, x = -3

E) x = -8, x = 9

Explanation:


\boxed{\begin{aligned}&\textsf{Given}: \quad &x^2+x-72& =0\\&\textsf{Rewrite the term in $x$}: \quad &x^2+9x-8x-72& =0\\&\textsf{Factor the first two and last two terms}: \quad &x(x+9)-8(x+9)& =0\\&\textsf{Factor out $(x+9)$}: \quad &(x-8)(x+9)& =0\\&\textsf{Apply the zero-product property}: \quad &(x-8) &=0 \implies x=8\\&&(x+9)&=0 \implies x=-9\\&\textsf{Therefore, the roots are}: \quad & x&=-9,\;8\end{aligned}}


\boxed{\begin{aligned}&\textsf{Given}: \quad &x^2-12x+20&=0\\&\textsf{Rewrite the term in $x$}: \quad &x^2-10x-2x+20& =0\\&\textsf{Factor the first two and last two terms}: \quad &x(x-10)-2(x-10)& =0\\&\textsf{Factor out $(x-10)$}: \quad &(x-2)(x-10)& =0\\&\textsf{Apply the zero-product property}: \quad &(x-2) &=0 \implies x=2\\&&(x-10)&=0 \implies x=10\\&\textsf{Therefore, the roots are}: \quad & x&=2,\;10\end{aligned}}


\boxed{\begin{aligned}&\textsf{Given}: \quad &x^2-4x-60&=0\\&\textsf{Rewrite the term in $x$}: \quad &x^2-10x+6x-60& =0\\&\textsf{Factor the first two and last two terms}: \quad &x(x-10)+6(x-10)& =0\\&\textsf{Factor out $(x-10)$}: \quad &(x+6)(x-10)& =0\\&\textsf{Apply the zero-product property}: \quad &(x+6) &=0 \implies x=-6\\&&(x-10)&=0 \implies x=10\\&\textsf{Therefore, the roots are}: \quad & x&=-6,\;10\end{aligned}}


\boxed{\begin{aligned}&\textsf{Given}: \quad &x^2+24&=-11x\\&\textsf{Add $11x$ to both sides}: \quad &x^2+11x+24&=0\\&\textsf{Rewrite the term in $x$}: \quad &x^2+8x+3x+24& =0\\&\textsf{Factor the first two and last two terms}: \quad &x(x+8)+3(x+8)& =0\\&\textsf{Factor out $(x+8)$}: \quad &(x+3)(x+8)& =0\\&\textsf{Apply the zero-product property}: \quad &(x+3) &=0 \implies x=-3\\&&(x+8)&=0 \implies x=-8\\&\textsf{Therefore, the roots are}: \quad & x&=-8,\;-3\end{aligned}}


\boxed{\begin{aligned}&\textsf{Given}: \quad &x^2-x-72& =0\\&\textsf{Rewrite the term in $x$}: \quad &x^2-9x+8x-72& =0\\&\textsf{Factor the first two and last two terms}: \quad &x(x-9)+8(x-9)& =0\\&\textsf{Factor out $(x-9)$}: \quad &(x+8)(x-9)& =0\\&\textsf{Apply the zero-product property}: \quad &(x+8) &=0 \implies x=-8\\&&(x-9)&=0 \implies x=9\\&\textsf{Therefore, the roots are}: \quad & x&=-8,\;9\end{aligned}}

User Ayoub Kaanich
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories