Answer:
Explanation:
To find the product of each expression, we can use the distributive property to expand the terms:
(2x - 4y)(x + 3y) = 2xx + 2x3y - 4yx - 4y3y
= 2x^2 + 6xy - 4xy - 12y^2
= 2x^2 - (-2xy - 12y^2)
= 2x^2 - 2xy - 12y^2
(x − 4)(2x − 1) = x2x + x(-1) - 42x - 4(-1)
= 2x^2 - x - 8x + 4
= 2x^2 - 9x + 4
(2x - 3)(x - 1) = 2xx + 2x(-1) - 3x - 3(-1)
= 2x^2 - x - 3x + 3
= 2x^2 - 4x + 3
(3x - 3y)(2x - y) = 3x2x + 3x(-y) - 3y2x - 3y(-y)
= 6x^2 - 3xy - 6xy - 3y^2
= 6x^2 - (-6xy - 3y^2)
= 6x^2 - 6xy - 3y^2
I hope this helps! Let me know if you have any questions.