Answer:
Zeros:
Explanation:
Given quadratic polynomial:
![x^2+x -20](https://img.qammunity.org/2023/formulas/mathematics/high-school/d2jvs5e98da3w3n74yrk836z4cfneq1l42.png)
The zeros of a function f(x) are the x-values that satisfy the equation f(x)=0.
Therefore, to find the zeros of the given function, set it to zero and solve for x.
Factor the quadratic:
![\implies x^2+x-20=0](https://img.qammunity.org/2023/formulas/mathematics/college/mw714ehtamdyot20z7dx88cmtlqnpxkxyf.png)
![\implies x^2+5x-4x-20=0](https://img.qammunity.org/2023/formulas/mathematics/college/3noir4z1n3rglu5dikqtyboq3qbdsmj8qq.png)
![\implies x(x+5)-4(x+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/7zs2j1a72hdd8nrkoeii9uyo7oxke9em73.png)
![\implies (x-4)(x+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/29azav8ndtxrid4p1md0s3gohnwum85ck6.png)
![\boxed{\begin{minipage}{8.4 cm}\underline{Zero Product Property}\\\\If $a \cdot b = 0$ then either $a = 0$ or $b = 0$ (or both).\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yblr3d6ycmrfsh3ur03ad71ykxgzk3l5gz.png)
Apply the Zero Product Property:
![\implies x-4=0 \implies x=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/bwpf7kdilg9jqve5kvtzczefli53znypde.png)
![\implies x+5=0 \implies x=-5](https://img.qammunity.org/2023/formulas/mathematics/college/fnzfmu9ak2gb3ublfy533316z6vog2fbg0.png)
Therefore, the zeros of the given quadratic polynomial are: