Answer:
A) 0.0330
B) 3.30%
C) $182,000
Explanation:
Given the compound interest formula S = P(1 +r)^t, you want to find ...
- r for S=165000, P=95000, t=17
- S for t=20, other values the same
A) Growth rate
The growth rate r in the formula can be found by solving for r:
S = P(1 +r)^t
S/P = (1 +r)^t
(S/P)^(1/t) = 1 +r
r = (S/P)^(1/t) -1
r = (165000/95000)^(1/17) -1
r ≈ 0.0330
B) Percent
Multiplying by 100%, we get ...
r = 0.0330 × 100% = 3.30%
The growth rate is about 3.30%.
C) 2011
The value of the house (in thousands) in 2011 will be ...
S = 95(165/95)^(20/17) ≈ 181.88 ≈ 182
The value of the house in 2011 will be about $182,0000.
__
Additional comment
Using 95(1+0.0330)^20 for the 2011 house value gives a different result in the 10s place, so rounding to thousands will give the same result. In general, we don't like to round intermediate results in a computation like this. That is why we used (165/95)^(1/17) for (1 +r) instead of (1 +0.033).
Here, it doesn't matter, but it does matter in many cases.
<95141404393>