Answer: r=40⁵/₆ cm
Explanation:
The area of the sector is equal to the product of the arc length of the sector by half the radius:
![\displaystyle\\A=L((1)/(2)r ) \ \ \ \ \ (1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u98qxm9083est9ssguxoeco5ravb8nbtyr.png)
A - an area of the sector
L - the arc length of the sector
r - the radius of the sector
Multiply both parts of the equation (1) by 2:
![2A=Lr](https://img.qammunity.org/2023/formulas/mathematics/high-school/vgbb19os4563cgq0w5zvovu20hh786sca6.png)
Divide both parts of the equation by L:
![\displaystyle\\(2A)/(L) =r\\\\Thus,\ r=(2A)/(L)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qm2xog5jhiuvo63cnnkoxq89dys1ye4s50.png)
Hence,
![\displaystyle\\r=(2(245))/(12) \\\\r=(490)/(12) \\\\r=40(5)/(6)\ cm](https://img.qammunity.org/2023/formulas/mathematics/high-school/ys9f1b97h03ratr5fbw076l3eoverxwwui.png)
L: