Answer:
Here, h1=4.00m,h92)=3.00m,Delta t =0.01 s.Letv1 be the velocity of the ball (actind downwards) just before striking the floor an dv20 be the velocity of the ball (acting upwaeds) ust after striking the floor. Then, change in velocity of the ball in time Δtv2−(−v1)v2+v1
:. acceleration, a=v2+v1Δt ..(i)
When body falls from height h1,
then u=o,v1,a=gandS=h1
As, v21=u2+2aS,
:. v_(1) ^(2) =0 + g h_(10 or v12–√gh1
Taking motion of the ball after striking the floor, then u=v2,v=0,a=−g,S=h2
As, v2=u22as,∴v21=0+2gh1orv_(1) =sqrt 32 g h_(1)Tak∈gmotionoftheballa>erstrik∈gthe⌊,⌋thenu=v_(2), v=0, a=- g, S=h_(2)As,v2=u2+2aS,wehave0 = v_(2)^(2) +2 (-g) h_92) otr v2=2–√gh2
Putting values in (i) we get,
a=2–√gh2+2–√gh1Δt)
a=2–√×9.8×3+2–√×9.8×40.01
= 1652m/s2.
Explanation: