212k views
2 votes
1. If Y~Pois(λ), simplify the ratio of probabilities: P(Y=k+1)/P(Y = k)​

1 Answer

4 votes

Let, Y~Pois(λ):

If
Y is a random variable that is distributed according to the Poisson distribution with parameter λ, then the probability mass function of
Y is given by:


  • P(Y=k)=(e^(-lambda).(lambda)^k)/(k!)

  • P(Y=k+1)=(e^(-lambda).(lambda)^(k+1))/((k+1)!)

Simplification;


  • ((e^(-lambda).(lambda)^(k+1))/((k+1)!))/((e^(-lambda).(lambda)^(k))/(k!))


  • =(e^(-lambda).(lambda)^(k+1))/((k+1).k!) (k!)/(e^(-lambda).(lambda)^(k))


  • =((lambda)^(k+1))/((k+1)) (1)/((lambda)^(k))


  • =((lambda)^(k).(lambda))/((k+1)) (1)/((lambda)^(k))


  • =((lambda))/((k+1)) .(1)/(1) =(lambda)/(k+1)

User Blackus
by
3.2k points