48.9k views
5 votes
NO LINKS!! Please help me with this problem. Part 8ff​

NO LINKS!! Please help me with this problem. Part 8ff​-example-1
User Russ Hyde
by
3.2k points

2 Answers

6 votes

Answer:


(1)/(36n^2+6n)

Explanation:

Given factorial expression:


((6n-1)!)/((6n+1)!)


\boxed{\begin{minipage}{6cm}\underline{Factorial Rule}\\\\$n!=\:n\cdot \left(n-1\right) \cdot \left(n-2\right) \cdot ... \cdot 3 \cdot 2\cdot 1$\\ \end{minipage}}

Apply the factorial rule to the numerator and denominator of the given rational factorial expression:


(6n-1)!=\left(6n-1\right)\cdot \left(6n-2\right)\cdot \left(6n-3\right)\cdot... \cdot 3 \cdot 2\cdot 1


\left(6n+1\right)!=\left(6n+1\right)\cdot \:6n \cdot (6n-1) \cdot...\cdot 3 \cdot 2\cdot 1

Therefore:


\begin{aligned}\implies ((6n-1)!)/((6n+1)!)&=(\left(6n-1\right)\cdot \left(6n-2\right)\cdot \left(6n-3\right)\cdot... \cdot 3 \cdot 2\cdot 1)/(\left(6n+1\right)\cdot \:6n \cdot (6n-1) \cdot...\cdot 3 \cdot 2\cdot 1)\\\\&=(1)/((6n+1) \cdot 6n)\\\\&=(1)/(6n(6n+1))\\\\&=(1)/(36n^2+6n)\end{aligned}

User Ashok JayaPrakash
by
3.4k points
3 votes

Answer:


  • \cfrac{1}{6n(6n+1)}

--------------------------------

We know that:

  • n! = 1·2·3·4·...·n

Therefore:

  • (6n + 1)! = (6n - 1)!·6n·(6n + 1)

Therefore:


  • \cfrac{(6n-1)!}{(6n+1)!} =\cfrac{(6n-1)!}{(6n-1)!(6n)(6n+1)} =\cfrac{1}{6n(6n+1)}
User Zsawaf
by
2.8k points