Answer:
![\textsf{a)} \quad A=(x(2x+22))/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/oqs1q10g4ofm9b9yp8dial8vfvy2yu6t1q.png)
![\textsf{b)} \quad x > 4](https://img.qammunity.org/2023/formulas/mathematics/college/oaufhekhfnnl0rys4538s6btsfery0qeq5.png)
![\begin{aligned}\text{c)} \quad x &= 11.75\; \sf in\\y &= 68.98\; \sf in \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/nq5as3f0adbydut2bjf9fzj8b6hwrb5ckn.png)
Explanation:
Part (a)
Print area (blue rectangle):
- width = (x - 4) in
- length = (y - 2) in
- area = 30 in²
Create an equation for the print area using the given values and rearrange to isolate y:
![\implies (x-4)(y-2)=30](https://img.qammunity.org/2023/formulas/mathematics/college/wvylkra33lejfis8hq0tpxv5ncjly667a7.png)
![\implies y-2=(30)/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/c0aghz9c1iq0i4zict847nkx4z6acnabad.png)
![\implies y=(30)/(x-4)+2](https://img.qammunity.org/2023/formulas/mathematics/college/gmk8qnn2chrghk9je7xhgnvslwapoq2bdf.png)
Total area of the page is:
![\implies A=xy](https://img.qammunity.org/2023/formulas/mathematics/college/xomnczts2wb5gpzoq8p0vu1leeqzxjo3s7.png)
Substitute the found expression for y to write an equation for the total area of the page in terms of x:
![\implies A=x\left((30)/(x-4)+2\right)](https://img.qammunity.org/2023/formulas/mathematics/college/46kpma7aenm23wv9s7nm3gd1hvalfn10io.png)
![\implies A=x\left((30+2(x-4))/(x-4)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/d84i0x9tac50evdk770y77idg329ddaia4.png)
![\implies A=x\left((2x+22)/(x-4)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/fglb3e3k2z870813251w5qtnduaq2idgrk.png)
![\implies A=(x(2x+22))/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/tcpimn5dv3dn0ipbdh7aq6mg3hkd843qsa.png)
Part (b)
If x < 4 then A < 0.
If x = 4 then A is undefined.
Therefore, given the physical constraints of the problem, x has to be greater than 4.
Part (c)
Using a graphing utility, graph the function for area from part (a) when x > 4 (see attachment). (Note: The x-axis of the attached graph crosses the y-axis at y = 50 for ease of inspection).
The values of x and y that use the least amount of paper are the coordinates of the minimum point of the graph.
From inspection of the graph, the minimum point is: