65.3k views
15 votes
Please help on this question :) tyyy

Please help on this question :) tyyy-example-1
User Fadelakin
by
3.6k points

1 Answer

4 votes

Answer:


\mathrm{x_1=99/49-\sqrt38221/49;x_2=99/49+\sqrt38221/49}\\

Explanation:

Analyze the function:

f(x)=
-4.9x^(2)+19.8x+58

To find the x-intercept, set y=0:


-4.9x^(2) +
19.8_(x) + 58 = 0

Convert decimal to fraction:


-(49)/(10)x^(2) +
(99)/(5)x+58=0

Reduce the fraction:


-(49)/(10)
x^(2) +
(99)/(5) x + 58 = 0

Multiply both sides of the equation by the common denominator:


-(49x10)/(10)×
x^(2)+
(99x10)/(5) x × + 58 × 10 = 0 × 10

Reduce the fractions:


-49x^(2)+198x + 58 × 10 = 0 × 10

Calculate the product or quotient:

-49
x^(2)+198x+580=0

Make the leading coefficient positive:

49
x^(2) -198x-580=0

Identify the coefficients:

a = 49, b = -198, c = -580

Substitute into x =
(-b\pm√(b^2-4ac))/(2a)


x=\frac{-\left(-198\right)+\sqrt{{(-198)}^2-4*49*(-580)}}{2*49}\\

or


x=\frac{-(-198)-\sqrt{{(-198)}^2-4*49*(-580)}}{2*49}

Combine the results:


x=(99+√(38221))/(49)\ or\ x=(99\ -\ √(38221))/(49)\\\\

User Modem Rakesh Goud
by
3.4k points