185k views
9 votes
What is the wavelength (in nm) of a 3 eV photon?

User Yashraj
by
5.8k points

2 Answers

9 votes

Answer:The wavelength of a photon with energy 3.0 eV is 413.57 nm and it is for visible light. This wavelength is of ultraviolet light.

Step-by-step explanation:

User Elliot Woods
by
5.8k points
10 votes

We are given

  • Energy of photon is = 3 eV

To find the wavelength of photon we have to use the Planck Expression.


\qquad
\star\: \: \pink{\boxed{\frak{ E = hf}}}


\qquad
\bf \longrightarrow E = hf


\qquad
\sf \longrightarrow E = h * (c)/(\lambda) \: \: \purple{\bigg(\because f = (c)/(\lambda)\bigg)}

Where, E is the energy of photon and f is the frequency of photon & h's called Planck Constant.


\qquad
\sf \longrightarrow h = 6.63* 10^(-34) \:Js


\qquad Speed of light, c =
\sf 3*10^(8) \:m/s


\qquad\qquad\quad\underline{\sf{Substituting \ Values \ :}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━


\qquad
\bf \longrightarrow E = h * (c)/(\lambda)


\qquad
\bf \longrightarrow \lambda = (hc)/(E)


\qquad
\sf \longrightarrow \lambda = ( 6.63* 10^(-34)* 3* 10^(8))/( 3eV)


\qquad
\sf \longrightarrow \lambda = ( 6.63* 10^(-34)* 3* 10^(8))/( 3 * 1.6* 10^(-19))\: \:\purple{ \bigg(\because 1 eV= 1.6* 10^(-19) J\bigg)}


\qquad
\sf \longrightarrow \lambda = \frac{ 6.63 * \cancel{3}* 10^(-34+8)}{\cancel{3}* 1.6* 10^(-19)}


\qquad
\sf \longrightarrow \lambda = ( 6.63 * 10^(-26))/(1.6* 10^(-19))


\qquad
\sf \longrightarrow \lambda = 4.144 * 10^(-26+19)


\qquad
\sf \longrightarrow \lambda = 4.144 * 10^(-7)


\qquad
\sf \longrightarrow \lambda = 4.144* 10^(-7)\: m


\qquad
\sf \longrightarrow \lambda = 4.144 * 10^(-7)* 10^(9) \: nm\: \: \purple{\bigg(\because 1m = 10^9\: nm \bigg)}


\qquad
\sf \longrightarrow \lambda = 4.144 * 10^(-7+9)\: nm


\qquad
\sf \longrightarrow \lambda = 4.144 * 10^(2)\: nm


\qquad
\pink{\bf \longrightarrow \lambda = 414.4\: nm}

  • Henceforth, wavelength will be 414.4nm.
User Justine Krejcha
by
5.5k points