Answer:
-43/102
Explanation:
You want the value of the given expression involving radicals and logs.
Rules
The relevant rules of logarithms and radicals are ...
![\log_b{(b^a)}=a\\\\\sqrt[n]{a^m}=a^{(m)/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/t3dpma85eop8x2s19zk1t3s1lppmvy94ha.png)
Application
The given expression can be simplified as follows.
![\frac{\log_3{\sqrt{243\sqrt{81\sqrt[3]{3}}}}}{\log_2{\sqrt[4]{64}}+\log{10^(-10)}}=\frac{\log_3{(3^5\cdot(3^4\cdot3^{(1)/(3)})^{(1)/(2)})^{(1)/(2)}}}{\log_2{2^{(6)/(4)}}+(-10)}\\\\\\=\frac{\log_3{3^((5+13/6)(1/2))}}{3/2-10}=(43/12)/(-17/2)=-(2\cdot43)/(12\cdot17)=\boxed{-(43)/(102)}](https://img.qammunity.org/2023/formulas/mathematics/college/8871u2pacp1tab40kelghjmwimthv9vldy.png)
A suitable calculator can give you the same result.