Answer:
See answers in explanation
Explanation:
For 1.)
A.)
![x-y=7\\x+y=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/jvw70h1azpys2732nljjag0srvluq0ghv6.png)
For elimination, attempt to remove one variable. For these problems, the two equations can be added together without modification to remove y:
![x-y=7\\+\\x+y=5\\2x=12\\(2x)/(2)=(12)/(2)\\x=6](https://img.qammunity.org/2023/formulas/mathematics/high-school/fbenhae4zo9v98wg21bfigqljbmtbpb22f.png)
Now, substitute x for 6 in equation 2:
![6+y=5\\(6+y)-6=(5)-6\\y=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/dct46r13wdp130eg2mft0g92bbhawi7nb2.png)
To check,
![6-(-1)=7\\7=7](https://img.qammunity.org/2023/formulas/mathematics/high-school/us599wzdljugiy7e5asb1k54zbj3kg1gik.png)
and
![6+(-1)=5\\5=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/o2mwmceet1gx3bod3v1dg8ei2m7nvgkqin.png)
B.)
![2m+5n=3\\-2m-n=5\\\\4n=8\\(4n)/(4)=(8)/(4)\\n=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/xo3e8vkbk2n4amat2mvcs45k0dw71lrinl.png)
Substitute into equation 2:
![-2m-(2)=5\\(-2m-2)+2=5+2\\-2m=7\\(-2m)/(-2)=(7)/(-2)\\m=-(7)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/oempf9jelq2myusf51rydpd4sxpmwz3x3w.png)
For part 2, a manipulation must be made for each problem to eliminate a variable:
A.)
![x-y=15\\4x+2y=30\\\\2(x-y=15)\\4x+2y=30\\\\2x-2y=30\\4x+2y=30\\\\6x=60\\(6x)/(6)=(60)/(6)\\x=10](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbp39c4d663ino2afg0b9lw8k0tf8pt55o.png)
Substitute into equation 2:
![4(10)+2y=30\\40+2y=30\\2(20+y)=30\\(2(20+y))/(2)=(30)/(2)\\20+y=15\\(20+y)-20=(15)-20\\y=-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/jjuk3ctzxfs4m4do66yz7pk5u4uss1ya3x.png)
B.)
![2c+3d=17\\5c+6d=32\\\\-2(2c+3d=17)\\5c+6d=32\\\\-4c-6d=-34\\5c+6d=32\\c=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/r6407y03591xs5bdtq0dmvl9lyy0wa9uqe.png)
Substitute into equation 2:
![5(-2)+6d=32\\-10+6d=32\\(-10+6d)+10=(32)+10\\6d=42\\(6d)/(6)=(42)/(60)\\d=7](https://img.qammunity.org/2023/formulas/mathematics/high-school/avh28xegh4b1xnelcbr963sqd84dteo2i6.png)
For question 3, both equations in each system must be manipulated to eliminate a variable:
A.)
![2x+3y=16\\5x-2y=21\\\\2(2x+3y=16)\\3(5x-2y=21)\\\\4x+6y=32\\15x-6y=63\\\\19x=95\\(19x)/(19)=(95)/(19)\\x=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/yaae31gi51z3kocvx1yoigax8sm8v480vr.png)
Substitute into equation 2:
![5(5)-2y=21\\25-2y=21\\(25-2y)-25=(21)-25\\-2y=-4\\(-2y)/(-2)=(-4)/(-2)\\y=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/cubwguwhh7eesj65w8ld46gfaarvikfoqm.png)
B.)
![6s-7t=25\\15s+3t=42\\\\3(6s-7t=25)\\7(15s+3t=42)\\\\18s-21t=75\\105s+21t=294\\\\123s=369\\(123s)/(123)=(369)/(123)\\s=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/7z9hta8zakv3gk7pqhbdjo03534oz041gz.png)
Substitute into equation 2:
![15(3)+3t=42\\45+3t=42\\(45+3t)-45=(42)-45\\3t=-3\\(3t)/(3)=(-3)/(3)\\t=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/khnxuxw8ddubf7ankrol2jzoedrwi8meim.png)
I didn't write out all the checks, but all these answers satisfy their original equations. Hope this will help you out.