135,116 views
12 votes
12 votes
Potassium Chlorate decomposes into Potassium Chloride and Oxygen.

What volume of oxygen gas does 9.32 grams of potassium chlorate produce at STP based on the equation shown?

User Jonathan Spiller
by
2.6k points

1 Answer

27 votes
27 votes

Answer:In order to be able to calculate the volume of oxygen gas produced by this reaction, you need to know the conditions for pressure and temperature.

Since no mention of those conditions was made, I'll assume that the reaction takes place at STP, Standard Temperature and Pressure.

STP conditions are defined as a pressure of

100 kPa

and a temperature of

0

C

. Under these conditions for pressure and temperature, one mole of any ideal gas occupies

22.7 L

- this is known as the molar volume of a gas at STP.

So, in order to find the volume of oxygen gas at STP, you need to know how many moles of oxygen are produced by this reaction.

The balanced chemical equation for this decomposition reaction looks like this

2

KClO

3(s]

heat

×

−−−→

2

KCl

(s]

+

3

O

2(g]

Notice that you have a

2

:

3

mole ratio between potassium chlorate and oxygen gas.

This tells you that the reaction will always produce

3

2

times more moles of oxygen gas than the number of moles of potassium chlorate that underwent decomposition.

Use potassium chlorate's molar mass to determine how many moles you have in that

231-g

sample

231

g

1 mole KClO

3

122.55

g

=

1.885 moles KClO

3

Use the aforementioned mole ratio to determine how many moles of oxygen would be produced from this many moles of potassium chlorate

1.885

moles KClO

3

3

moles O

2

2

moles KClO

3

=

2.8275 moles O

2

So, what volume would this many moles occupy at STP?

2.8275

moles

22.7 L

1

mol

=

64.2 L

Step-by-step explanation:

User MinhD
by
3.0k points