Answer:
We expect 95% of head breadths to be between 4.3 inches and 7.5 inches.
Explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 5.9 inches, standard deviation = 0.8 inches.
We expect 95% of head breadths to be between
Within 2 standard deviations of the mean, so:
5.9 - 2*0.8 = 5.9 - 1.6 = 4.3 inches
5.9 + 2*0.8 = 5.9 + 1.6 = 7.5 inches
We expect 95% of head breadths to be between 4.3 inches and 7.5 inches.