This question is incomplete, the missing diagram is uploaded along this answer below.
Answer:
the forces required to keep the artery in place is 1.65 N
Step-by-step explanation:
Given the data in the question;
Inlet velocity V₁ = 50 cm/s = 0.5 m/s
diameter d₁ = 15 mm = 0.015 m
radius r₁ = 0.0075 m
diameter d₂ = 11 mm = 0.011 m
radius r₂ = 0.0055 m
A₁ = πr² = 3.14( 0.0075 )² = 1.76625 × 10⁻⁴ m²
A₂ = πr² = 3.14( 0.0055 )² = 9.4985 × 10⁻⁵ m²
pressure at inlet P₁ = 110 mm of Hg = 14665.5 pascal
pressure at outlet P₂ = 95 mm of Hg = 12665.6 pascal
Inlet volumetric flowrate = A₁V₁ = 1.76625 × 10⁻⁴ × 0.5 = 8.83125 × 10⁻⁵ m³/s
given that; blood density is 1050 kg/m³
mass going in m' = 8.83125 × 10⁻⁵ m³/s × 1050 kg/m³ = 0.092728 kg/s
Now, using continuity equation
A₁V₁ = A₂V₂
V₂ = A₁V₁ / A₂ = (d₁/d₂)² × V₁
we substitute
V₂ = (0.015 / 0.011 )² × 0.5
V₂ = 0.92975 m/s
from the diagram, force balance in x-direction;
0 - P₂A₂ × cos(60°) + Rₓ = m'( V₂cos(60°) - 0 )
so we substitute in our values
0 - (12665.6 × 9.4985 × 10⁻⁵) × cos(60°) + Rₓ = 0.092728( 0.92975 cos(60°) - 0 )
0 - 0.6014925 + Rₓ = 0.043106929 - 0
Rₓ = 0.043106929 + 0.6014925
Rₓ = 0.6446 N
Also, we do the same force balance in y-direction;
P₁A₁ - P₂A₂ × sin(60°) + R
= m'( V₂sin(60°) - 0.5 )
we substitute
⇒ (14665.5 × 1.76625 × 10⁻⁴) - (12665.6 × 9.4985 × 10⁻⁵) × sin(60°) + R
= 0.092728( 0.92975sin(60°) - 0.5 )
⇒ 1.5484 + R
= 0.092728( 0.305187 )
⇒ 1.5484 + R
= 0.028299
R
= 0.028299 - 1.5484
R
= -1.52 N
Hence reaction force required will be;
R = √( Rₓ² + R
² )
we substitute
R = √( (0.6446)² + (-1.52)² )
R = √( 0.41550916 + 2.3104 )
R = √( 2.72590916 )
R = 1.65 N
Therefore, the forces required to keep the artery in place is 1.65 N